论文部分内容阅读
我国钒钛磁铁矿资源储量丰富,主要分布在四川攀枝花地区和河北承德地区,其中攀枝花地区总储量近百亿吨,钒和钛的储量分别居全世界的第三和第一位,综合利用价值极高。目前,钒钛磁铁矿精矿的利用主要以高炉-转炉冶炼生产钢为主,兼顾提钒,钒资源利用率较低。高炉渣中Ti02含量仅为22%左右,因回收利用困难而大量损失于高炉渣中,钛资源没有得到回收利用。为了提高炉渣Ti02品位,攀钢集团利用攀枝花选铁厂产出的铁品位为54%的钒钛磁铁矿精矿通过回转窑或转底炉预还原,预还原后的金属化球团在电弧炉中冶炼,得到的熔分钛渣的Ti02品位为45%左右,比高炉渣中Ti02的品位高出一倍,但杂质含量仍较高而难以进一步利用。攀枝花地区的钛资源,近一半以上赋存于钒钛磁铁矿精矿中,因此,如何利用攀枝花地区钒钛磁铁矿精矿制备出品位较高,可用于硫酸法制钛白的钛渣,对增加我国可供利用的钛资源量,提高攀枝花地区钛资源的综合利用率具有重要的意义。论文针对攀枝花地区钒钛磁铁矿精矿中的钛资源多年来难以利用的问题,提出“钒钛磁铁矿精矿深度精选除杂-选冶联合制备中钛渣”的学术思想,为降低钛渣中杂质含量和硫酸法制钛白提供技术支撑,论文开展的主要研究工作以及成果如下:(1)攀枝花钒钛磁铁矿选矿厂生产的钒钛磁铁矿精矿铁品位为54%,纯度不高。通过细磨深度弱磁选精选以及浮选脱硫,达到了深度精选降低杂质含量,提高铁精矿铁和钛品位的目的,为后续还原熔分得到较高品位的钛渣奠定了基础。高品位钒钛磁铁矿精矿的MLA(矿物解离分析)研究表明,深度精选后的钒钛磁铁矿精矿中钛磁铁矿含量达到95%以上,杂质大多以微米级的超微细片晶嵌布在钛磁铁矿颗粒中,难以进一步解离而无法利用矿物加工技术得到更深入的纯化。同时,为减少资源损失,采用弱磁选对精选尾矿进行再富集得到铁品位为54.06%的铁精矿,可以作为高炉冶炼的原料。损失在最终尾矿中的铁和钛都不超过10%。(2)为防止外来杂质进入渣相降低渣的Ti02品位,利用有机粘结剂造球,外配煤还原的方式进行球团的还原。研究表明,球团金属化率随还原温度的提高而逐渐增加,金属化率超过90%,难以进一步提高。通过外配煤等温还原金属化球团的XRD检测,钒钛磁铁矿精矿的还原是逐级完成的,还原过程首先是钛磁铁矿(Fe2.75Ti0.2504)的脱氧生成 Fe2.5Ti0.504,Fe2.5Ti0.504 继续还原为钛铁矿(FeTi03)和金属铁,然后钛铁矿还原为亚铁假板钛矿(FeTi205)和金属铁的顺序,亚铁假板钛矿的继续还原很难。对不同温度下还原的金属化球团SEM-EDS分析表明,随着还原温度的提高,金属化球团中金属铁颗粒逐渐增多,球团中各元素的迁移聚集行为更明显。还原动力学研究表明,随着还原过程转化率的逐渐增加,反应活化能也随着增大。当还原温度为1250℃时,转化率低于0.7,还原以相界面反应机理控制。转化率大于0.7时,还原由随机成核随机生长机理控制。(3)金属化球团熔分热力学计算表明,生成单质Fe、V、Ti、Si在热力学上可以进行,铁水中的V、Si、Ti会与渣铁界面的FeO发生耦合反应,其中渣中FeO含量对钒的还原进入铁水的影响最大。添加CaO有利于还原并减少渣中FeO含量,从而有利于提高渣中Ti02品位和钒在铁中的分配,有利于实现渣铁更好的分离和有价元素的高效回收。钛氧化物还原为TiC的反应较容易进行,要抑制TiC的形成,必须合理控制熔分时的配加碳量。Factsage 7.0计算结果表明,碱度为0.8~1.2之间熔化温度较低,且在此碱度范围内,熔分温度为1550℃时渣粘度值较小。(4)熔分试验结果表明,原始球团原始碱度较小,渣熔化温度高,渣铁不分,少量CaO添加可有效促进渣铁分离。最佳的熔分条件下渣铁分离良好,得到含钒铁水中V含量为0.56%,Ti含量为0.43%,Si含量为0.12%。熔分渣中TiO2含量为56.32%,铁含量为6.34%。熔分渣中的铁主要以微细粒金属铁颗粒在渣中嵌布,可以通过细磨磁选有效去除,从而提高渣中Ti02的品位。经过磁选得到的非磁性产品Ti02品位高达60.38%,铁含量只有0.62%。由于该钛渣Ti02品位远高于常规的熔分钛渣,而低于常规的高钛渣,所以称为中钛渣,其中的杂质含量显著降低,可以作为硫酸法制钛白粉的合格原料。磁性产品可返回下次熔分,从而形成闭路流程,最大程度地回收利用其中的钛铁资源。