基于OpenWrt的智能音箱系统设计与实现

来源 :广东工业大学 | 被引量 : 0次 | 上传用户:shires2006
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,随着物联网及人工智能的飞速发展,人们的日常生活方式正在悄然发生改变,人们开始不断地追求便捷、丰富和智能的家居生活,由此智能家居领域开始变得异常火热。同时,面对家居环境下日益增长的需求用户对家庭设备的投入成本不断升高,并且传统的家居音箱设备播放音频资源有限、无法同已有的家庭设备相互通信控制更无法为家庭用户提供个性化的服务,家居音箱呈现出通用性不强、个性化不足等特点。因此,设计出一款节约成本、与家居场景深度融合并且功能新颖的智能音箱系统来满足这种家居需求变得很有必要。为此,本文的工作内容如下:(1)对智能音箱进行了总体需求分析后提出了智能音箱系统的整体架构,以及对硬件平台进行设计,提出软件系统整体方案和语音情感识别解决方案。(2)针对智能音箱存在的音频问题,搭建OpenWrt系统环境并基于嵌入式音频架构对智能音箱的WM8960音频驱动和音频播放器进行实现,进而完善智能音箱的音频系统。(3)分析用户对软件功能的需求,在智能音箱设备嵌入式端对音频播放模块、无线通信与交互模块进行设计与实现;在手机终端对音频播放控制APP进行开发。(4)针对用户身心健康监测功能,对智能音箱语音情感识别系统进行了设计。包含语音情感特征提取、遗传算法优化支持向量机分类器和改进二进制布谷鸟搜索算法的特征选择等,最后设计出特征选择结合SVM分类的语音情感识别系统,并通过实验得以验证。(5)基于智能音箱系统的上述设计与实现,分模块对系统进行了测试,通过测试该智能音箱系统功能实现基本完好,运行正常,可满足智能家居场景下的需求,具有一定的市场价值与社会意义。
其他文献
关系分类是自然语言处理领域的一项重要任务,也为知识图谱的构建、问答系统和信息检索等相关研究提供技术支持。深度学习技术的出现拓展了关系分类任务的相关研究,在实验效果上取得进一步的突破,基于深度学习的关系分类方法逐渐成为该研究的重点研究方法之一。近年来,基于深度学习的关系分类研究在任务改进方面主要集中在对注意力机制的优化和对语义信息的优化两大方面上。然而,此类方法目前尚且存在以下问题:(1)不少学者在
电致变色材料,是指在外部电压或电流的激励下,会发生产生稳定、可逆的颜色转变现象的具有光学调制能力的一类材料,是目前最有研究和应用前景的智能材料之一。电致变色技术可以应用于智能窗、EC显示屏、柔性电子、智能手机等领域。近些年来,电致变色材料在机理研究和应用探索方面取得了长足的进步,但是在器件结构、电解质问题和封装问题等方面仍然存在许多需要克服的地方,而且因为其高成本使得距离民用化和商业化还有很长一段
随着工业行业的迅速发展,设备的精度及稳定性越来越受客户关注。在生产加工中,要求数控机床的加工精度高,且稳定,是制造商推向客户的重要一点。在高端设备加工中,机床的以上特性尤为重要。对于机械结构而言,机床铸件及在安装过程存在几何误差,在生产过程中这种误差已经很难被消除。工件在加工过程中刀具和加工工件在切削力的作用下其角度和直线度会有偏差,造成加工程序程序中指定的位置与实际位置会有误差,导致工件尺寸超差
无源定位技术是一种定位设备自身不需要对外界辐射信号,仅通过接收并分析目标辐射的信号来确定目标位置的技术,具有隐蔽性强、抗干扰能力强的特点。多站无源定位是通过设立多个观测站点获取目标位置信息,通过集中式数据处理或分布式数据处理的方式实现观测信息融合,从而实现目标定位。而实现运动目标定位跟踪需要解决的重点问题是研究其滤波跟踪算法,但由于实际定位过程中存在目标机动、环境因素、设备因素等诸多因素影响,会引
近十年来新能源汽车得到了广泛的关注。然而,不少新能源汽车的设计仍沿用传统燃油车的方案,特别是外观设计。对于选择新能源汽车的用户而言,是否有区别于传统燃油车的外观设计需求,是值得研究的课题。感性工学设计方法能捕捉及量化用户的感性需求,被大量应用于产品外观设计的用户需求分析。传统的感性工学设计方法需进行大量的访谈及实验,数据收集成本较大。随着移动互联网的普及以及用户共享意识的提升,用户在汽车论坛、网站
在对现代控制系统的分析研究中,最优控制问题备受关注。一方面,保证被控系统的闭环稳定性仅仅是最低要求,还需要进一步优化系统性能;另一方面,许多经典的优化控制方法在处理复杂非线性系统优化问题时常常具有局限性。为弥补传统方法的缺陷,实现日益复杂的非线性系统的最优控制任务,自适应动态规划(Adaptive Dynamic Programming,ADP)方法应运而生,其作为一种利用强化学习思想,在动态规划
在实际应用中,机器人往往处于未知和非结构化的工作环境中。机器人在真实环境中找到自己的定位依赖于同步定位与地图构建技术(Simultaneous Localization and Mapping,SLAM),即在运动的同时获取传感器数据来评估真实环境信息,结合地图信息实现自我定位并建造增量式地图。传统SLAM方法在移动机器人在建图导航时仅考虑XY坐标和偏航(Yaw),导致地面平整性和凹凸障碍物信息缺
序列号,是指纸币上的一串由英文和阿拉伯数字组合的字符序列。每张纸币都有一个唯一的序列号,是纸币的特殊身份标识。因此,实现对纸币序列号的精准识别,在防伪、追踪被盗纸币、提高金融市场稳定性等方面起着至关重要的作用。随着金融经济的快速发展,对纸币识别系统的序列号识别能力的要求也不断提高。然而,现有的纸币序列号识别方法普遍存在着识别准确性差、易受外部环境的制约、对纸币污损残缺的适应能力差等不足。其主要原因
随着车联网技术的不断发展,车辆安全逐渐受到人们的重视,制定合理的驾驶评估方法已成为保障安全驾驶的重要任务。然而,影响驾驶安全的评估因素众多,这让驾驶指标的选取成为重大难题,如果选择影响因子过小的驾驶指标,最后的评估结果往往缺乏通用性与客观性。现有的驾驶评估可视化应用多以总体评估的方式呈现给用户,但这种方式缺乏量化的数据,用户并不知道自己是在什么时间点、因为什么样的行为造成驾驶评分下降。为了充分利用
近些年来,人工智能技术的发展如火如荼,模式识别领域同样百花齐放。面向小样本的生物特征识别作为一项重要的技术,在学术领域引起广泛的关注与研究。在现实生活中,非接触的身份验证识别得到更多人们的支持,不仅是其方便性得以满足,而且在安全性上,也达到了一定的标准。所以研究生物特征识别是一项具有前景的工作,特别是小样本情况下,智能系统的识别算法。本文的小样本有两层意思,其中指的是训练样本的数量和训练样本的维度