论文部分内容阅读
随着工业生产水平的提高以及社会生活条件的发展,一些非线性负荷和分布式电源大量的接入配电网系统中,造成了潮流的双向流动,对电能的污染增加,严重时超过了的允许限度。电能质量的好坏会影响人民的生产和生活。优质的电能有利于确保电网和电气设备安全稳定运行,有利于提高产品生产的质量,有利于保障人民的正常生活。为了能够系统地分析和研究电能质量,提高电能质量,找出导致电能质量所存在问题,并且对这些问题采取相应的解决措施,必然需要对电能质量参数进行测量和分析。目前电能质量检测系统的数据采集大多数是局部单点测量,测量的结果只反映局部系统运行状态,但是测量的数据没有统一的时间标记和联系,缺乏准确性。对不同地点的电网信号采样时提出基于GPS同步采样的方法,实现对异地电能质量参数的同步测量与分析,系统实时的掌握全网的运行状态。为了实现不同地点的同步采样,提出了基于GPS的同步采样方法。利用GPS高精度的秒脉冲信号(Pulse Per Second,PPS)启动主控芯片外部中断,触发不同地点的采样装置,对三相电压电流信号进行同步采样。同时ADC转换器将采样得到的模拟数据进行数字信号转换,再把这些数据打上记录世界时钟的标签实现设备的同步采样和测量。在整个同步采样过程中,先把模拟信号转换为数字信号得到电压、电流有效值,然后利用傅里叶变换得到了电压、电流的相位,准确的获得电压、电流矢量。对于电能质量检测装置的设计实现,先从电能质量参数的检测算法上进行了说明。介绍了主要稳态电能指标的检测方法,其中闪变检测采用的是现有的IEC平方闪变检测方法。对于谐波检测来说,由于FFT的计算效率较高,在嵌入式系统DSP中能够方便的实现,所以在FFT算法上提出了基于4项莱夫-文森特窗(Rife-Vincent,RV)窗的多谱线插值FFT改进算法。推算出谐波的频率、幅值和相位的计算表达式,通过曲线拟合函数推出了既简单又实用的插值修正表达式。然后对弱信号以及复杂的谐波信号进行相应的仿真计算,并同几个典型的加余弦窗函数FFT算法对比,发现4项RV(Ⅰ)窗函数FFT算法在计算谐波参数时的准确性较好,可以很好的抑制非整周期采样造成的长范围泄露问题,而多谱线插值FFT改进算法可以有效的对短范围泄漏进行修正。从硬件和软件两个方面设计了电能质量检测装置。该系统在基于GPS时钟信号同步采样和各电能质量测量算法的基础上设计出了ADC+DSP+MCU的硬件构架。系统的硬件和软件部分根据模块化的思想进行了设计,并对测量结果和误差的来源进行了分析。