【摘 要】
:
作为新一代人机交互平台,虚拟现实聚焦身临其境的沉浸体验,强调用户连接交互深度而非广度。虚拟化身是用户在虚拟场景中所使用的虚拟形象。应用可由用户身体动作直接实时控制的三维虚拟化身(Avatar)一直被认为是实现虚拟现实深度沉浸感的重要手段。由用户身体动作直接控制虚拟化身的常用解决方案是使用动作捕捉设备实时获取人体运动,再将其转化为虚拟化身运动,从而实现对虚拟化身的控制。现如今,随着虚拟现实环境的普及
论文部分内容阅读
作为新一代人机交互平台,虚拟现实聚焦身临其境的沉浸体验,强调用户连接交互深度而非广度。虚拟化身是用户在虚拟场景中所使用的虚拟形象。应用可由用户身体动作直接实时控制的三维虚拟化身(Avatar)一直被认为是实现虚拟现实深度沉浸感的重要手段。由用户身体动作直接控制虚拟化身的常用解决方案是使用动作捕捉设备实时获取人体运动,再将其转化为虚拟化身运动,从而实现对虚拟化身的控制。现如今,随着虚拟现实环境的普及,大众化、低成本的虚拟化身驱动方法被广泛需求,选择低成本、易使用的实时动捕设备成为主要趋势。本文以Kinect为低成本动作捕捉设备,提出了一种虚拟化身实时驱动方案,包括Kinect运动数据的实时去噪和虚拟化身实时驱动系统的实现。本文的主要研究工作如下:1、提出了一种由双向循环自编码器和卷积自编码器串联构成的Kinect骨骼运动数据去噪网络,其中双向循环自编码器用于让网络输出数据具有更高的位置精度,卷积自编码器用于让去噪后数据具有更好的平滑性。实验结果表明本文方法在位置误差、骨骼长度误差与平滑性误差均优于现有去噪方法。2、在去噪算法基础上,基于Unity和Python实现了虚拟化身实时驱动系统。该系统能够通过Kinect实时获取人体骨骼运动数据,经过实时去噪后驱动虚拟化身运动。3、以虚拟化身实时驱动系统为基础实现了一款体感健身游戏,论证了本文提出的虚拟化身实时驱动方案能够有效提升体感游戏的识别准确度和抗干扰性。
其他文献
情感估计是人机交互中至关重要的一环,让机器准确地理解用户情感可以建立起更加和谐的人机环境。由于面部表情是人类表达情感的主要方式,因此,基于人脸视频的情感估计成为近年来的研究热点。情感主要有离散分类和连续维度两种模型表示。其中,基于连续维度的情感模型将情感状态映射到一个连续的维度空间中,相较于离散分类的情感模型,它可以描述出更复杂、微妙的情感。因此,本文致力于探究自然环境下的人脸视频维度情感估计,具
随着当今社会的发展,对室内定位的需求日益增加,由于GPS等室外定位技术在室内定位的应用受到限制,目前室内多采用射频识别(Radio Frequency Identification,RFID)、红外线、超声波、Wi Fi、超宽带(Ultra-Wideband,UWB)等定位技术,其中UWB由于时间分辨率高、穿透性强、抗多径能力强等特点,使得其更适用于室内定位,而其他定位技术大都由于易受环境影响、定
在科技飞速发展的时代,科技文献数量增长的速度越来越快,但是科技文献一般篇幅较长,无法快速掌握核心内容,因此,急需一种科技文献关键短语提取方法。关键短语提取是指从一段文字中标注出能够概括该段文本核心意思的短语或词语。现有的大多数科技文献关键短语提取方法都基于词频信息,并没有包含足够的语义信息;很多方法属于单词级别,没有利用单词之间产生的短语信息,在提取多个单词的较长关键短语上效果不佳。针对上述问题,
关系抽取任务旨在从半结构化或非结构化文本中获取结构化的事实知识三元组,为知识图谱的构建提供数据支持。目前,常用的抽取方法主要是基于特征模式的关系抽取方法与基于神经网络的关系抽取方法。基于特征模式的关系抽取方法依靠手工设计的特征模板对半结构化或非结构化文本数据进行模式匹配而后提取出符合特定模式的关系知识,而基于神经网络的关系抽取方法则依赖于神经网络结构自动提取文本中与事实关系相关的上下文特征以提取关
多模态数据是指同一个事物可以有多种表现形式,包括文本、图像、音频等等。同一类的多模态数据虽然表达的事物相同,但它们之间的表达形式完全不同,存在着巨大的语义鸿沟。多模态数据随着信息技术的飞速发展不断增长,在丰富人们的信息生活的同时也带来了很多问题。如何在海量且无序的多模态数据中搜索需要的信息、识别特定的数据等问题都亟待解决。多模态研究通过一定的技术手段分析和研究不同模态之间的内部联系跨越它们之间的语
目前,生物特征识别技术已经大规模应用,这对生物特征识别技术的安全性、准确性、实时性和交互性都提出了很高的要求。在基于图像或者视频的生物特征识别技术中,感兴趣区域(ROI)的准确定位和提取非常重要和关键。掌纹识别已经成为一个新兴的生物特征识别技术,受到广泛的关注,目前,掌纹识别的ROI提取主要是针对静态图像进行提取,提取算法缺乏交互性,也难以从动态视频中有效提取ROI,为解决这个问题,本文开展了深入
随着音频编辑软件的盛行,人们为了不法目的可以对音频文件进行恶意篡改,为音频的真实性检测带来严峻挑战。其中,复制粘贴篡改是音频语义篡改中最常见的篡改方式,由于其篡改片段的属性与原始音频文件极为匹配,检测难度大,已成为多媒体取证领域研究的热点之一。本文面向数字音频展开复制粘贴篡改检测与定位研究,主要工作如下:(1)提出了一种基于常数Q倒谱系数(Constant Q Cepstral Coefficie
在现代软件工程中,软件系统通常是通过选择合适的、现成可重用的构件,然后用明晰的软件体系结构组装这些构件来进行开发。这项技术由于能够显著降低软件的开发成本和时间,已在实际的软件行业得到了广泛的应用。然而,软件测试几乎要耗费软件开发资源的一半。因此,如何合理分配测试资源,以耗费尽可能少的测试资源,谋求尽可能大的软件可靠性和尽可能少的测试成本,一直是软件工程领域中的一个热点和难点问题。特别是近年来,以美
Android——作为移动设备中主流智能系统,由于系统源码的开放性以及第三方应用市场稽查力度不足,导致Android恶意软件层出不穷,对用户隐私、财产安全等诸多方面构成严重威胁。在此背景下,如何有效地检测真实场景中的Android恶意软件具有重要的理论和实际意义。近年来,研究学者们致力于Android恶意软件检测工作并取得了不错的成果,但纵观整个检测领域,仍存在两点不足:一是现有工作大多是为提升检
科技化发展使得人们的生产生活问题有了新的解决方式。然而,现实生活中仍然存在着许多因供求双方信息不对称、不透明,信息更新不及时等导致的需求匹配困难问题。区块链技术的发展为这些需求匹配问题提供了新的解决思路。区块链技术的去中心化、不可篡改,以及可追溯的特性,天然地适合于解决供求双方间的信任问题。架设于区块链之上的智能合约,也能够在满足预先设置的条件下,安全、高效地得到令需求方满意地结果。虽然研究人员已