垃圾焚烧飞灰制备微晶玻璃及污染物控制机理

来源 :北京科技大学 | 被引量 : 0次 | 上传用户:weiyuhang99
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
2020年,我国垃圾焚烧飞灰(简称飞灰)量1000万吨。飞灰因含二噁英和重金属被列为危险固废(HW18),其填埋法和水泥固化法存在环境污染风险,熔融固化法无法资源化利用,亟需研发飞灰无害化处置和资源化利用。本文基于重金属为形核剂、硅氧四面体为玻璃网络结构原理,以飞灰协同处置不锈钢酸洗污泥,采用熔融法制备微晶玻璃,阐明了微晶玻璃的同温核化-晶化机理,揭示了重金属和氯盐的迁移、转化和固化规律,描述了飞灰微晶玻璃的核化、晶化过程,开发了一步法热处理工艺,主要结论如下:(1)阐明了同温核化-晶化机理,实现了一步法制备微晶玻璃技术。不锈钢酸洗污泥中Fe2O3、CaF2和Cr2O3可作为微晶玻璃的形核剂,Cr2O3提供的自由氧和CaF2中F-替代O2-导致玻璃网络Si-O键断裂,产生非桥氧,降低玻璃的稳定性,增强晶化能力。当不锈钢酸洗污泥添加为22 wt.%时,基础玻璃晶化温度Tp和玻璃化温度Tg接近(ΔT(Tp-Tg)<177℃),玻璃稳定性较差,Avrami指数为3.5,形核活化能为264.29 kJ/mol,析晶机制为整体析晶-晶核呈三维生长,核化和晶化在同一温度进行,实现一步法制备微晶玻璃。(2)阐明了微晶和玻璃相协同固化重金属机理。微晶玻璃中的重金属形成稳定的微晶相或被玻璃相物理包覆。Cr和Ni主要以尖晶石NiCr2O4和Fe0.99Ni0.01Fe1.97Cr0.03O4存在,少量Cr固溶于透辉石相中;Pb、Zn、Cu主要以物理包覆形式均匀分布于玻璃基体中。重金属固化效果与结晶度呈正相关,随着结晶度的增加,重金属由不稳定的酸可提取态、还原态和氧化态向稳定的残渣态转变,微晶玻璃的重金属固化效果增强。(3)揭示了氯在微晶玻璃中固溶固化机理。部分氯在飞灰制备玻璃升温过程中挥发,残余氯以固溶体的形式固化于玻璃相和硅酸钙氯石相中,弥散分布于微晶玻璃,表现出良好的稳定性。(4)研发了飞灰协同酸洗污泥和废玻璃一步法制备微晶玻璃技术。40 wt.%飞灰、22 wt.%不锈钢酸洗污泥和38 wt.%废玻璃在1400℃下熔融3h得到的基础玻璃,然后800℃下热处理30 min,获得了主晶相为透辉石相的微晶玻璃,其硬度和抗弯强度分别为13.11 GPa和135.84 MPa,耐酸碱性分别为98.65%和99.88%,重金属(Pb、Cr、Ni、Zn、Cu)的TCLP浸出浓度分别为0.15、0.20、0.12、0.01、0.11 mg/L,远低于US EPA TCLP规定阙值,综合性能指标满足工业微晶玻璃板材(JC/T 2097-2011)的要求。(5)通过成分调配工艺,研究了飞灰在微晶玻璃中的最大消纳量。研究表明其上限为50 wt.%,50 wt.%飞灰、28 wt.%废玻璃和22 wt.%不锈钢酸洗污泥,制备的微晶玻璃的密度为3.13 g/cm3,吸水率为0.07%、硬度为7.97 GPa,抗弯强度为114.86MPa,耐酸性和耐碱性分别为99.29%和99.79%。Cr、Cu、Ni、Pb、Zn 的 TCLP 浸出浓度分别为 0.12、0.1、<0.01、<0.01 和 2.56 mg/L,远低于US EPA TCLP规定阙值,HJ557-2010重金属浸出浓度低于综合废水排放标准(GB8978-2017)规定阙值。氯在微晶玻璃中具有良好的稳定性,当浸出液pH为3、6、10、13时,氯的浸出浓度为0,当pH为1时,氯的浸出浓度为0.1 mg/L。总之,制备的微晶玻璃综合性能指标满足工业微晶玻璃板材(JC/T2097-2011)的要求。本研究为飞灰无害化处置资源化提供全新的思路,不仅避免环境污染,而且将其制备成无毒、高值的微晶玻璃。
其他文献
随着经济的发展、社会的繁荣、时代的进步,传统老字号品牌的发展现状已不容乐观,同时它们的传统商业模式也已无法适应当下竞争激烈的商业社会。这些老字号品牌如何在高速发展
以白光发光二极管(LED)为基础的半导体照明和液晶背光源显示技术已经覆盖了社会的各个领域,与人们的生产生活紧密联系在一起。近年来,人们对白光LED光源及相关器件的品质化需
滚磨光整加工工艺能够有效的改善零件表面质量、提升零件的使用性能,广泛应用于航空航天、光电工程、汽车轮船、等机械结构的精密零件表面加工。磨液作为滚磨光整加工主要介质之一,对加工零件的表面质量和物理性能影响很大。但是,目前国内外对滚磨光整加工磨液的研究较为欠缺,实际生产中使用的磨液种类单一、成本高、重复利用性差,且对环境具有一定的污染性。为此,制备了高效、绿色环保的新型滚磨光整加工磨液,通过滚磨光整加
固体氧化物燃料电池(SOFCs)是一种具有高效转化率的环境友好型发电系统,镍-氧化钇稳定氧化锆(Ni-YSZ)阳极拥有良好的催化活性和化学与机械稳定性,是目前应用最广泛的阳极材料。除了阳极材料本身的性质以外,阳极的气孔结构及孔隙率也在很大程度上影响着电池的输出性能。研究表明通过改变孔道结构可以对三相反应界面(TPB)产生影响,根据Knudsen扩散理论,气体在定向孔道中的传输速率要大于非定向孔道,
癫痫症作为一种脑科疾病,神经科医生需要实时监控患者脑电状态来实现癫痫发作预测。人工方法不仅耗时,且受医生专业水平限制。因此使用计算机辅助诊断实现癫痫自动发作检测十分重要。但传统方法利用的数据局限于脑电信号本身的时间特征和频率特征而忽略了隐含的空间特征;同时,不平衡的脑电数据集对跨患者癫痫发作预测模型的性能造成不利的影响。本文通过深度集成网络实现对脑电信号多种特征的自动提取,并使用生成式对抗网络对脑
作为碱性阴离子交换膜燃料电池(AEMFCs)核心部件的阴离子交换膜(AEMs)一直面临电导率低、耐碱性差和尺寸稳定性差等问题。其中,被研究人员普遍关注的咪唑鎓盐和季铵盐AEMs仍存在耐碱性差的主要问题。因此,对此类AEMs进行结构优化或改性研究并提出耐碱性等性能提高的策略,具有重要的实际和理论意义。增加咪唑鎓盐的空间位阻能够提高其小分子的耐碱性。为此,本论文从结构设计角度出发,设计并研究咪唑环C2
深圳证券交易所于2004年5月27日成立中小企业板。自此,中小企业取得了快速蓬勃的发展。截至2020年2月,已有973家公司在中小板成功上市。中小板上市公司借助中小板市场扩展了
随着计算机和互联网的快速发展,语音分离技术已广泛运用到诸如助听器、移动通信、智能家居设备和语音信号处理等研究领域中,得到了越来越多研究者的关注。由于现实环境中噪声的干扰,如何高效,快捷地获得干净的目标语音信号,一直是研究中的一个热点问题。基于深度学习的语音分离技术将语音分离任务转化为一个机器学习的过程,与传统语音分离技术相比,有着重要的研究意义和广阔的研究前景,可广泛用于助听器设备和语音识别的前端
研究发现,三氟甲基的引入会改变有机分子的极性、偶极距、稳定性和亲脂性等性质,因此广泛应用于生命科学、医药、农药和新材料等领域,所以,含三氟甲基化合物的合成非常重要。
光子晶体作为一种介电常数在空间上呈周期性排列的结构材料,可在特定方向和波段对光波进行调控,在光学领域具有广泛的应用前景。通常研究的光子晶体材料结构处于微米级别,适用于红外和可见光波段,而对于短波段需要其结构在纳米尺寸上具有有序周期性排列的光子晶体材料少有研究。有序介孔分子筛由于其高比表面积、孔径均一可调等性质使其在催化、吸附和化学传感等领域有广泛的应用。同时,其独特的纳米孔道结构为应用于短波段光子