【摘 要】
:
多目标优化问题在现实生活中广泛存在,这些问题具有复杂度高,不易求解等特点,传统的数学方法难以对该类问题进行很好的求解。为解决这个问题,多目标进化算法被提出来并获得了广泛应用。多目标进化算法是启发式搜索算法中的一种,在处理多目标优化问题上,该类算法表现出了良好的鲁棒性和适用性。然而,随着目标个数的增加,这些多目标优化算法的有效性将逐渐地失效。原因是当目标数大于三个时,非支配解的数量将快速的占据整个种
论文部分内容阅读
多目标优化问题在现实生活中广泛存在,这些问题具有复杂度高,不易求解等特点,传统的数学方法难以对该类问题进行很好的求解。为解决这个问题,多目标进化算法被提出来并获得了广泛应用。多目标进化算法是启发式搜索算法中的一种,在处理多目标优化问题上,该类算法表现出了良好的鲁棒性和适用性。然而,随着目标个数的增加,这些多目标优化算法的有效性将逐渐地失效。原因是当目标数大于三个时,非支配解的数量将快速的占据整个种群的数量,传统的支配关系将失去收敛压力的功能,导致整个种群无法收敛到真实的帕累托最优面(Pareto optimal front,PF)上。为处理好该问题,基于指标类的超多目标进化算法和基于分解类的超多目标进化算法被提出来用于增强环境选择。然而,指标类算法获得的解集易于收敛到某些特定的帕累托区域,从而导致种群多样性和覆盖度方面的缺失;分解类算法的性能又依赖于真实PF的形状。针对指标类和分解类的超多目标进化算法存在的不足,本文主要致力于对基于指标和基于分解的超多目标进化算法进行改进,提出了两种超多目标进化算法,其内容如下:1)提出了一种基于指标带边界保护策略的超多目标进化算法(An Indicator-based Many-objective Evolutionary Algorithm with Boundary Protection,简称MaOEA-IBP)。在MaOEA-IBP中,设计了一种基于I?+指标和边界保护策略的最差淘汰机制,可更好地平衡种群的收敛性、多样性和覆盖率。具体来说,首先从种群中选取一对具有最小I?+指标值的个体,如果其中一个个体支配另外一个个体,则淘汰被支配的那个个体,否则用边界保护策略淘汰一个性能较差的个体。MaOEA-IBP继承了指标的优点,同时也弥补了指标在多样性和覆盖性方面的不足。为了验证所提出算法的性能,将MaOEA-IBP与四种基于指标的算法(即ISDE+、SRA、MaOEAIGD和ARMOEA)以及其它五种最新的MaOEAs(即KnEA、MaOEA-CSS、1by1EA、RVEA和EFR-RR),在各种超多目标测试问题上进行了比较。实验结果表明,MaOEA-IBP具有优越的竞争性。2)提出了一种基于分解带目标空间转移的超多目标进化算法(An Decomposition-based Many-objective Evolutionary Algorithm with the Transfer of Objective Space,简称MOEA/D-TOS)。该算法很好的利用了权重求和收敛能力强的优势,同时弥补了权重求和不能处理好非凸问题的缺陷。首先,MOEA/D-TOS利用当前种群和预设PF之间的方差预估出真实PF的形状;然后,计算出个体到真实PF的距离,根据该距离将个体映射到凹问题内;最后,在凹问题中利用权重求和函数计算出映射后个体的适应值,适应值越大代表个体越优秀。为了验证所提出算法的性能,MOEA/D-TOS在各种类型的超多目标测试问题上,与MOEA/D的八个变体及一些最新的超多目标分解算法进行了实验对比与分析。实验结果表明,与对比的算法相比,MOEA/D-TOS算法具有一定的竞争优势.
其他文献
背景:人工全膝关节置换术(Total knee arthroplasty,TKA)中在使用旋转平台假体(Rotating-platform prosthesis,RP)时,对后交叉韧带的不同处理方式中有两种假体设计分别对应两种手术方式,其中一种是后交叉韧带保留型旋转平台假体(Posterior cruciate-retaining rotating-platform prosthesis,CR-R
量子计算是依赖于量子力学原理来获得解的一种新型计算模型,由于量子计算的并行计算能力,量子计算在解决某些特定问题时,它比经典计算的效率要高。Grover量子搜索算法是量子算法中具有广泛应用前景的一种算法,算法可以在量子线路复杂度为/O(2n/2)的情况下求解一个规模为2n的搜索问题。本文从降低Grover算法的量子线路复杂度的角度出发,提出两种改进的算法,并将改进的算法应用到3-SAT问题上。1.为
随着信息化和数字化的快速发展,人们对信息传播质量的要求日益提高,作为传播最为广泛的媒体之一,数字图像的成像质量也成为了各行各业关注的焦点。然而,成像硬件、成像环境以及传输技术等条件的限制往往会降低图像的分辨率,导致图像信息的丢失。因此,如何将低分辨率图像通过算法重建为高分辨率图像始终是图像处理以及计算机视觉领域的一个热门研究方向。近几年利用深度学习算法进行图像超分辨率重建的研究逐渐增多,同时也取得
单目图像的三维人体姿态估计是计算机视觉中一项基本但富有挑战的任务,其目的是检测单目图像中的人体姿态并将其投影到三维空间中。随着科学技术的快速发展,三维视觉已成为人工智能研究和应用的热门领域,越来越多的专家学者投入到该领域的探索中。三维人体姿态估计精度一方面受图像外部遮挡、自遮挡和光线等因素影响,另一方面人体结构的特殊性也会给该问题的解决带来诸多困难。并且,如何将二维空间提升到三维空间本身是一个复杂
随着大数据、人工智能的高速发展,大数据系统平台数据量的规模呈爆炸式增长,庞大的数据量对数据存储和网络传输提出了不小的挑战,为了应对这一系列挑战,必须保证大数据平台数据存储中心的高效率存储和网络传输的高吞吐量,对平台上待存储的数据先进行压缩后再处理是应对这一挑战的有效手段,Gzip压缩算法因其压缩率高、压缩速度快被广泛应用于数据压缩领域。传统的Gzip软件压缩虽然可以实现数据压缩,但会占用通用处理器
随着大数据时代的到来,挖掘海量数据流的实时价值对于各行各业来说越来越重要。这类高速产生的流式数据通常具有实时性、动态性及持续性等特征,并且人们很难预测其未来的分布特性。分布式流处理系统可以满足企业人员处理实时数据流的需求。为了提高处理数据流的吞吐量,分布式流处理系统会利用流应用中的数据并行性。然而,倾斜分布的数据流常常会导致算子的并行实例之间的负载分配不均衡。其中,高负载的节点会拖累系统的处理速度
步态是一种流行的生物识别技术,可以远距离识别人类。它应该是唯一可以在远距离收集的生物特征。由于其独特的优势和在视频监控中的巨大潜力,在过去的20年中,许多研究人员对其进行了研究。尤其是近几年来,随着深度学习的发展,步态识别有了很大的提高。如今指纹、人脸识别的技术愈发成熟,但是步态识别技术的应用还面临许多挑战,比如摄像头视角变化、衣着变化等对识别的影响,所以我选择步态识别这个课题,希望能为解决步态识
多任务进化是进化领域中的一个新兴研究方向,主要研究如何充分利用任务之间的协同作用提高种群搜索的效率和性能。相对于传统的单任务进化,多任务进化能够通过多个任务之间的知识迁移提高算法的性能和进化的效率。基于多任务进化框架提出的单目标多任务进化算法和多目标多任务进化算法已经进化获得了优异的成果。本文对多任务进化算法进行了研究,并且对该领域做出了以下贡献:(1)提出了一个基于种群分布的两阶段知识迁移多任务
图像是日常生活中的重要信息媒介,在获取、使用等过程中,不可避免受到噪声的影响,破坏图像的质量,妨碍后续的处理。图像去噪问题是典型的病态逆问题,通常是图像迭代求解算法的关键步骤,需要利用先验信息对其进行正则化约束。通常图像去噪技术利用单幅图像的各种先验特征,结合不同滤波方法完成去噪,可采用的先验信息有限,难以有效选取特征保护图像边缘细节,且需手动多次调整参数,效率较低。近年来以卷积神经网络为代表的深
随着信息科技的逐步发展,人们越来越能更加快捷方便地获取信息。但网络技术的迅猛发展与网络信息量的快速增长,却使人们逐渐迷失在大量无效信息的包围中。信息超载问题伴随着信息科技与互联网的发展逐渐被人们重视、研究,由于信息超载问题使得人们在面对海量信息时无法有效获取自己感兴趣或者对自己真正有用的信息,使得信息整体的使用效率降低。与搜索引擎依靠特定策略和算法对用户提交的关键词进行搜索不同,作为解决信息超载问