500W磁谐振耦合式无线充电系统的设计与实现

来源 :广东工业大学 | 被引量 : 0次 | 上传用户:lanyezy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着电动化设备的普及,对电池充电技术的要求也越来越高。因为传统有线接触充电方式存在维护成本高、安全隐患突出、智能程度低等问题,所以一种灵活性好、安全性高、维护成本低的无线充电技术应用于移动式电动设备成为一种必然之势。针对目前无线充电技术(Wireless Charging Technology,WCT)所存在的传输功率、传输距离、传输效率等技术问题,传统的WCT不能够满足移动式电动设备智能、快速、高效、稳定的充电任务需求。因此,探讨与开发一种可靠且高效的磁谐振耦合式无线充电系统具有重要的工程意义与价值。本文针对系统在无线充电过程中存在的发射机构补偿网络失谐、收发线圈偏移、负载特性敏感等问题,提出一种在发射机构通过定频定占空比控制,在接收机构增加一级DC/DC变换器并通过变频定占空比控制,实现系统有源阻抗匹配和全负载范围稳定工作的控制策略。然后根据系统理论分析、硬件与软件的设计,搭建了一台500W磁谐振耦合式无线充电系统样机,并完成电池负载恒压恒流充电测试实验。首先,介绍了系统功率拓扑结构选型;通过电路等效理论对LCCL-S型补偿网络进行了阻抗匹配特性分析,并给出了实现零电压开关(Zero Voltage Switch,ZVS)和零相角(Zero Phase Angle,ZPA)等特点的最优工作频率点;另外选择半桥LLC电路作为接收机构DC/DC变换器拓扑结构,并详细分析了其工作原理与机制。其次,基于收发机构补偿网络的建模与分析,对谐振器件参数进行了详细理论设计;根据谐振器件理论计算值,利用Matlab对谐振电感Lp、耦合系数k、负载RL变化与输出功率或传输效率之间的关系进行建模分析,验证系统理论分析的可行性。然后,根据系统设计指标对PFC电路、收发机构补偿网络、半桥LLC电路关键功率器件进行选型与设计,并详细介绍系统控制部分硬件和软件的设计。硬件部分主要包括DSP控制器及外围电路、驱动电路、电流电压差分采样电路、辅助电源电路设计;软件部分主要包括相关系统初始化配置以及软启动、数字PID和电池负载三段式充电控制算法设计。最后,在Saber软件上对系统进行仿真,并验证系统全负载范围工作时,在发射机构采用定频控制,在接收机构通过调节半桥LLC电路工作频率,实现收发机构开关管ZVS和抗线圈偏移的可行性。通过HFSS三维电磁仿真软件对收发线圈等直径双层结构和大套小双层结构进行磁场分布仿真,并在搭建的实验样机上进行不同条件下的电池负载恒压恒流充电实验。通过采集系统关键实验工作波形,结果验证了本系统实验样机设计与理论分析的可行性和有效性。
其他文献
随着物联网、5G和人工智能(Artificial Intelligence,AI)的飞速崛起以及高度融合,衍生出了一批又一批基于物联网的新型智能边缘应用(例如,智慧城市、智能安防、无人智能驾驶等)。然而,面对海量零散分布且消耗大量通信计算资源的智能边缘设备,如何提高能效以及创新供能方式成为制约智能边缘发展的瓶颈,如何巧妙联合通讯计算资源设计在降低智能边缘终端设备因模型训练而产生的巨大能耗的同时保证
互联网时代的今天,随着信息技术的发展,互联网的数据正在以前所未有的速度增长,这些数据还具有多样性,存在形式可能是图像、文本、音频、视频等等。然而,在大数据时代的今天,庞大的数据集和多彩多样的图像内容也给图像的有效检索带来了挑战。如何有效地提取具有丰富语义信息的高分辨率图像的特征,如何构造更好的损失函数来很好地保留相似性图像的语义信息,鉴于进行线性扫描的时间成本是非常巨大的,那么在大规模的数据集当中
车联网作为5G、交通和汽车领域跨界融合且最具潜力的应用,已成为我国战略性新兴产业的重要发展方向。道路安全、交通效率、自动驾驶和信息娱乐等各类车联网应用提出了低时延、高可靠、大带宽、高移动性等新的移动通信需求与挑战。本文主要解决车联网中的三个关键挑战:如何确保与交通相关的数据安全?随着移动互联网数据流量激增,如何保证车联网数据安全、可靠、稳定传输?如何利用有限的存储空间设计高效的缓存策略?本文主要聚
乳腺癌的发病率在女性癌症中位居首位,占所有新确诊癌症的30%,是威胁女性健康的头号敌人。淋巴结的转移状态是乳腺癌最重要的预后因素之一,及时、准确地检测腋窝淋巴结转移状态对指导乳腺癌的临床治疗至关重要。腋窝淋巴结清扫是临床检测的金标准,但它是一种有创的手术方式,会导致诸多术后并发症,例如淋巴水肿、血清瘤和感染性神经病变等,并且会让乳腺癌早期患者过度治疗。腋窝超声检查是一种应用于乳腺病变患者腋窝淋巴结
物理层安全是实现无线通信安全的一个关键技术,也可用于实现无人机(unmanned aerial vehicle,UAV)通信的信息传输安全。以无人机为空中移动基站,可以实现远距离通信更稳定的信息安全传输,同时也可以提高无线通信系统的通信质量和覆盖范围。然而无人机基站在和地面合法接收者通信时,由于无线通信具有广播开放的特性使得通信质量提高的同时也提升了窃听者接收到信息的强度,增加了通信过程中的安全隐
虚拟实验是一种模拟的交互式学习环境,允许学生完成实验室实验和理论的学习,而无需进入到实验室中。从空间角度区分,虚拟实验分为二维虚拟实验和三维虚拟实验,无论是感官体验还是表现形式上,三维虚拟实验更具空间感、更立体以及具备实时交互性、沉浸感高、构想性强等优点,是近些年来的热门研究方向。在虚拟世界的实验教学可以提高实验学习者的学习效率,但在人机交互方面还依旧采用鼠标、键盘等传统人机交互方式已经无法满足新
随着人们生活水平的不断提高,对汽车智能化水平提出了更高的要求。高级驾驶辅助系统随之出现,经过多年的发展,高级驾驶辅助系统已经形成了由多种传感器组成的复杂信息采集系统,毫米波雷达则是该系统的重要组成部分。由于毫米波雷达具有体积小、成本低、雨雪天气影响小等优点,受到各大汽车厂商和科研人员的广泛关注。目前,在汽车领域主流毫米波雷达分为24GHz和77GHz两个频段。24GHz频段雷达频率较低、波长较长,
随着科学技术的日新月异,大数据、物联网、云计算、人工智能等信息技术领域的得到了空前的发展。随之而来的是数据的快速“膨胀与变大”。这给身处在这个信息时代的我们带来了巨大的机遇和挑战。机遇在于若能恰当利用数据中的信息,我们定能神机妙算,事半功倍;而挑战在于我们如何恰到好处的从大量庞杂的信息中提取到我们需要的那一部分关键信息。数量大、维度高,是当前数据的普遍特点,我们在对其进行数据分析时往往耗费大量的时
目前工业机器人已广泛应用在智能制造领域,其中机器人位姿估计是工业应用中最常见的任务需求之一。在工业现场主要通过机器视觉实现简单场景下的机器人抓取位姿计算和物料分拣。随着工业控制对精确度和自动化要求的日益增长,传统的视觉位姿估计方法已不能满足日益复杂的任务场景与需求。在复杂工业应用场景中,待抓取的物体往往存在相互堆叠、交叉干扰、边缘模糊、噪声等问题,使工业机器人难以获取对于被测物体的准确抓取位姿。因
在临床医学上通过视力检测表对被测者的视力等级进行测评,传统的视力检测方式不但存在对场地和人员都有限制的问题,并且检测时不方便。而且视力检测仪器的成本很高,还需要专业人士操作指导。以上两种方法都耗费人力物力财力,且操作不易。基于此,以实现自动化视力检测为目标,本课题主要对用于自动化视力检测的手势识别模块进行研究,对手势识别过程中的深度学习算法进行改进,提高手势识别模型的识别精度和检测速度。本文主要工