【摘 要】
:
随着无线网络的普及,海量的异构终端设备不断接入互联网,数据类型变得更加复杂多样,数据量急剧增加;同时,智能家居、智能网联车等大量新型应用的涌现对服务的时效性提出了更高的要求。边缘计算作为一种新型的计算模式,在靠近用户或者数据源头的网络边缘侧,融合网络、计算、存储等资源为用户提供更加实时的服务。由于用户具有移动性,为了满足服务的低延时要求,边缘计算平台需要将承载服务的虚拟机迁移至距离用户更近的边缘服
论文部分内容阅读
随着无线网络的普及,海量的异构终端设备不断接入互联网,数据类型变得更加复杂多样,数据量急剧增加;同时,智能家居、智能网联车等大量新型应用的涌现对服务的时效性提出了更高的要求。边缘计算作为一种新型的计算模式,在靠近用户或者数据源头的网络边缘侧,融合网络、计算、存储等资源为用户提供更加实时的服务。由于用户具有移动性,为了满足服务的低延时要求,边缘计算平台需要将承载服务的虚拟机迁移至距离用户更近的边缘服务器上。然而与传统云计算相比,边缘计算环境下的虚拟机迁移技术面临节点异构性的问题,边缘服务器越来越多地采用动态随机存取存储器(DRAM)和永久性存储器(PM)组成的混合主存,但没有考虑到虚拟机迁移会在目标节点的内存上生成许多随机写入操作,这会导致内存性能下降,并给PM带来巨大的损耗。如何将虚拟机高效地迁移到距离用户近的边缘节点直接影响服务时延、系统计算能力及资源开销,是保障服务质量的关键研究问题。针对上述问题,本文主要工作和创新点如下:第一,面向NVM-DRAM混合内存的虚拟机动态迁移策略的设计与实现。本文首先重新审视了边缘计算系统架构设计,并深入分析了虚拟化以及动态迁移技术。针对采用混合内存的边缘计算平台,提出了一种基于冷热页面划分的动态迁移策略,设计LRU内存页面传输队列对内存数据进行迁移,减少传统算法迭代过程中重复拷贝相同内存页面的次数,采用虚拟化技术将虚拟机混合内存地址映射到物理内存地址,将迁移过程中的冷热内存页面存入目的虚拟机的相应内存区域,以减少持久性内存的损耗并提高内存性能。第二,边缘计算下的虚拟机分层迁移架构的设计与实现。虚拟机存储数据的迁移是虚拟机迁移的瓶颈,为了适应低带宽高时延的广域网环境,本文提出了虚拟机分层迁移框架,通过同步方法将源服务器上的存储数据分层迁移至目标服务器,可以通过提前部署相应数据层,从而缩短磁盘数据的传输时间,同时减少了迁移进程对网络资源的占用,降低了迁移开销。
其他文献
自动问答,旨在让机器通过检索、语义分析、自然语言理解等步骤,对自然语言问题进行自动作答。其中的开放域问答,所提问题多为通用问题,回答问题所需的资源不限定领域,更符合人们的问答习惯。近年来,随着神经机器阅读理解技术的发展,机器对自然语言理解方面的进步突飞猛进。由于机器阅读理解和开放域问答存在共通性,所以可以利用神经机器阅读理解的方法解决开放域问答问题,但是由于中文文本开放域问答任务自身特性,其中又存
本文以28nm体硅SRAM和28nm FDSOI SRAM为研究对象,以辐照实验、建模仿真、理论分析为研究方法,探讨了低能质子诱导的单粒子效应。文章主要内容及创新点如下:(1)介绍了课题背景及国内外相关技术研究现状。制造工艺的发展使以往可以忽略的问题变成亟待解决的挑战,必须对新涌现的问题开展机理研究。(2)研究了两款SRAM对低能质子的敏感性。开展了低能质子、高能质子辐照实验,结果显示FDSOI
基于CMOS工艺的超低功耗MTP存储器,作为小容量的嵌入式非易失性存储器,具有低成本、高可靠性和超低功耗的优势。随着物联网的兴起,超低功耗MTP存储器有着越来越广泛的应用。本课题的研究内容主要包括以下三个方面:(1)分析了典型的超低功耗MTP存储单元结构,在此基础上做了改进,提出了一种MTP存储单元结构,新的单元包含一个高压管。新的单元结构与典型的单元结构相比有以下优势:具有更小的单元面积,提高了
固态硬盘(SSD)以其高性能、高性价比,逐渐成为主流存储设备。但是,一些先天的特征仍然限制了它的广泛应用:(1)随着写及擦除次数的增加,极易磨损。因此,出于可靠性方面的考虑,SSD通常都装有专用的纠删码(EC)模块。但是,EC模块仅在纯粹的数据丢失情况下才被静态使用。换句话说,在数据完好无损的情况下(这种情况是SSD中的常态),EC模块不会被使用。(2)读、写、擦除这三个基本操作之间存在巨大的延迟
随着科技的发展进步,高性能计算早已经渗透到人类生活的各个领域,不仅包括互联网、大数据、云计算、人工智能等新兴领域,也涉及国防、天气预报、石油勘探等传统领域。高性能计算为计算机的底层计算提供持续的计算支撑。越来越多的领域使用的是基于协处理器系统的计算机,例如在HPC世界TOP500排名中就有很多基于协处理器系统的超算。在科研界,各大高校和研究机构普遍使用的也都是CPU和GPU协同工作的系统。特别是在
M-SOC是国产自主研发的高性能多核微处理器芯片,片上集成多个运算内核,具有很强的计算能力,传统DDR难以满足其高带宽的访存需求。高带宽存储器(High-Bandwidth Memory,HBM)作为一种新型存储解决方案能够提供更高的访存带宽,可有效缓解M-SOC所面临的“存储墙”问题。本文基于M-SOC对HBM的高带宽需求,设计并实现了其片上网络与HBM之间的数据转接桥(HBM Data Bri
使用诸如胖树、叶脊等拓扑的多根拓扑能够使网络鲁棒性得到显著增强,也给网络规模扩张提供了可能。但网络规模的扩大使得资源竞争的局部性冲突加剧,从而使拥塞控制变得越来越富有挑战。为了解决这一问题,基于信用预约的控制算法被提出,基于信用的拥塞控制算法在未发生拥塞前就确定各个节点能够占用的链路资源,以规划好的速率发送数据从而达到不引入排队延迟就能实现高利用率。但是实际部署基于信用预约的协议遇到了一些实际问题
在目前的100Gbps光纤骨干网中,DP-(D)QPSK调制格式因其频谱利用率高、色散容限高、抗非线性效应能力强等特性成为主流调制格式。相应地,传统的数字相干接收技术也已发展成熟。但是随着对智能光网络监测和网络安全需求的不断增加,超高速光信号智能接入已经成为了一个新的亟待解决的问题。在此应用背景下,传统数字相干接收技术暴露出了以下几大问题:1.数字相干接收机结构复杂、成本高昂;2.数字相干接收机一
量子霸权是量子计算发展中的里程碑,代表着量子计算装置的计算能力在某些特定问题上超越了最快的经典计算机,是量子计算研究领域的一个重要课题。玻色采样模型是实现量子霸权的有力候选实验,其对应的数学问题是一个经典计算机难以求解的采样问题,而其物理实现只需要全同光子、线性光学网络以及被动的探测,因此相对于通用量子计算机更容易实现。在玻色采样的相关研究中,玻色采样验证问题,是玻色采样的实现中的一个重要问题。然
高性能计算(High performance computing,HPC)在航空航天、天体物理学、生物医学、气象、材料科学、核工程等科学研究和工程技术领域无一不发挥着重要作用。粒子输运模拟就是其中的一项重要应用。自上世纪三十年代中子被发现后,对于各类微观粒子的研究就一直持续不断。粒子运输理论已经被应用在天体物理、核物理、医学放射性治疗等重要领域。粒子输运方程(Boltzmann方程)是描述粒子传输