醋酸纤维素复合材料的制备及其染料去除研究

来源 :中南民族大学 | 被引量 : 0次 | 上传用户:w11122
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
染料废水是我国的主要工业废水之一,染料废水严重破坏生态环境,危害人体健康安全,是我国需要重点治理的污染物之一。纤维素衍生物具有良好的生物相容性、较强的可再生性、无毒无害、对环境友好等特性,相比天然纤维素更易溶于一般有机溶剂,一直是人们关注的热点,在医疗、环保、食品包装、纺织等领域都有广泛应用。本文以醋酸纤维素作为原料,制备复合气凝胶和复合微球两种材料,采用扫描电镜、X-射线衍射、傅里叶红外、热重分析等设备对材料进行表征,并研究其对废水中染料的去除能力及抗菌性。本文研究内容及结论如下:(1)采用热诱导相分离法制备醋酸纤维素气凝胶,再浸泡在锆基金属有机框架(UIO-66-NH2)前驱液中原位法负载UIO-66-NH2,制备UIO-66-NH2/醋酸纤维素气凝胶,并用于亚甲基蓝和甲基橙的吸附。UIO-66-NH2/醋酸纤维素气凝胶具有良好的三维孔道结构。在最佳反应条件下对亚甲基蓝和甲基橙的最大吸附量分别是75.4mg/g和31.6mg/g。(2)采用预混法将干燥好的UIO-66-NH2在溶剂中混合均匀,再用热诱导相分离法制备醋酸纤维素气凝胶,得到UIO-66-NH2/醋酸纤维素气凝胶,并用于亚甲蓝和甲基橙的吸附。UIO-66-NH2/醋酸纤维素气凝胶的三维孔道结构随着UIO-66-NH2添加量的增加而减弱。最佳反应条件下对亚甲基蓝和甲基橙的最大吸附量分别是103.4mg/g和52.2mg/g。(3)选用预混法制备的UIO-66-NH2/醋酸纤维素气凝胶交联聚乙烯亚胺。采用戊二醛作为交联剂,在气凝胶表面交联负载聚乙烯亚胺,得到聚乙烯亚胺/UIO-66-NH2/醋酸纤维素气凝胶。吸附动力学实验和等温吸附实验表明,聚乙烯亚胺/UIO-66-NH2/醋酸纤维素气凝胶对亚甲基蓝和甲基橙的吸附符合准二级动力学和Freundlich吸附等温模型。最佳反应条件下对亚甲基蓝和甲基橙的最大吸附量分别是129.5mg/g和78.9mg/g。(4)采用乳化法制备多孔醋酸纤维素微球,再用原位一锅法对微球用聚多巴胺和Ag-Fe3O4进行修饰,得到新型Ag-Fe3O4/聚多巴胺/多孔醋酸纤维素微球。微球具有良好的球形多孔结构,Ag-Fe3O4纳米粒子成功均匀的负载在微球表面。Ag-Fe3O4/聚多巴胺/多孔醋酸纤维素微球可快速催化还原4-硝基苯酚(4-AP),抗菌实验表明对大肠杆菌有良好的抑制作用。
其他文献
人体活动检测与识别是物联网领域的热门研究方向之一,具有重要的理论与应用价值。虽然基于视频和可穿戴传感器的活动检测方法已经取得了较高的准确率,但仍存在较强的使用限制和成本问题。而基于Wi-Fi信号的方法突破了传统方法的局限性,能够在无光照和遮挡的情况下使用,不涉及用户隐私,且成本低廉易进行大规模部署,因此被广泛应用在人体活动识别领域。基于Wi-Fi信号的方法分为基于接收信号强度指示(Received
水稻(Oryza sativa)是中国四大粮食作物之一,也是植物研究的理想模式植物之一。水稻在生长过程中经常会受干旱、高盐、低温等逆境的影响。因此,研究水稻对逆境的抵抗能力并揭示其抗逆的分子机理具有重理论意义和应用前景。转录因子在水稻逆境信号转导途径中起重要调节作用。NAC(NAM,ATAF1/2和CUC)家族是最大的植物特异性转录因子家族之一,参与植物生长发育过程中的多个生物学过程,在生物和非生
随着无线传感器网络(Wireless Sensor Networks,WSNs)和水下通信技术的快速发展,水声传感器网络(Underwater Acoustic Sensor Networks,UASNs)已经发展成为探索海洋世界、获取水下信息等业务的关键技术之一。UASNs是WSNs在水下部署的一种特殊形式,由于UASNs所处水下环境的特殊性,使得用于水下作业的传感器不能像陆地上使用的传感器一样
随着信息技术的发展,农业信息逐渐转向智能化。为突出信息真实性和及时性,在农产品追溯系统中对农产品生产过程进行信息化记录尤为普遍。农业生产过程记录是农产品质量追溯的重要环节,因此利用农业生产图像自动识别农事行为活动变得尤为重要。行为识别目前有传统学习和深度学习两类方法,对于人类简单的行为大多数取得了不错的效果。行为识别拥有广阔的使用场景,如智能监控、人机交互等,然而在农业应用领域还没有显著研究和利用
在所有疾病中,癌症是人类的主要死亡原因之一,这种情况在发展中国家表现得更为突出。在不同的治疗策略中,化学疗法一直是治疗肿瘤的最可靠选择之一。几千年来,天然产物为化疗药物的发现提供了重要来源,为维护人类健康做出了巨大贡献。目前,超过60%的抗癌药物来自天然产物。研究表明,传统中草药及民族药物具有多途径、多靶点、多效应、多向性及毒副作用小等优势,为了更深入的了解癌症和改善癌症的治疗效果,进一步探究癌症
碳基超级电容器凭借着功率密度高、使用寿命长、安全性能好等优势,在储能领域作为电池的补充甚至替代品备受关注。然而,较低的能量密度制约着其在许多战略性新兴产业如电动车中的应用。究其原因,一方面碳材料基于双电层电容储能的容量有限;另一方面碳材料制备过程易团聚,导致比表面积降低。有鉴于此,本文从以下角度出发来优化碳基超级电容器的电化学性能:设计高比表面积和/或多孔的碳纳米结构,增加暴露的表面活性位点;杂原
可穿戴电子设备的飞速发展,对电子器件的小型化,多功能化提出了更高的需求。近年来,针对可穿戴电子设备的集成器件系统研究成为热点。集成器件根据功能可以划分成三个部分:产能单元、储能单元和传感单元。其中储能单元主要由二次离子电池或超级电容器组成,传感单元通常选用应用场景广泛的应变传感器、光传感器或温度传感器等。传统集成系统是构建在集成电路等硬质基底上,而硬质基底既不利于设备的穿戴舒适性,同时难以满足传感
随着我国经济的发展,公共建筑的类别、功能呈多元化,其用水结构、用水需求也逐渐趋于复杂化。居民生活与公共建筑密不可分,在建立节水型社会的背景下,加强对公共建筑供用水系统的研究,有望进一步挖掘公共建筑的节水潜力。本论文以优化公共建筑给水系统设计为目的,旨在确定显著影响公共建筑用水量的主要因素,并通过建立数学模型,实现用水量预测。在计算公共建筑用水量时,可参考模型预测值,帮助消除选择用水定额时存在的主观
沉水植物是水生态系统的核心成员之一,在富营养化水体中,底栖藻类是沉水植物生长的陪伴者,它们大量附着或者缠绕在沉水植物上,导致沉水植物出现生长抑制甚至死亡,是目前利用沉水植物进行水体修复实践过程中一直难以解决的一大难题。现有研究初步表明营养和光照是控制底栖藻类生长的关键因素,但缺乏系统性结论。本论文首先研究了沉积物营养释放对不同类型底栖藻类生长特征及其磷迁移转化的影响,选择其中的底栖细鞘丝藻生物膜为
病理性疼痛严重影响患者生活质量,吗啡等阿片类受体激动剂止痛效果显著,但长期使用易产生药物成瘾和戒断症状,开发安全高效镇痛药物是药物研发的热点和难点。课题组之前的研究表明查尔酮类化合物龙血素B阻断初级感觉神经元电压门控性钠通道,从而产生良好的镇痛效果,很好的揭示了傣药龙血蝎镇痛效应的分子机制。名贵中药甘草具有止咳、平喘、镇痛等功效,研究表明甘草富含查尔酮类化合物,其中甘草查尔酮A、甘草查尔酮B和甘草