基于注意力机制的知识感知融合推荐算法研究

来源 :辽宁大学 | 被引量 : 0次 | 上传用户:SAGDGJGU
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,知识图谱在推荐系统中的应用越来越受研究人员的重视,它不但可以提高推荐的准确性,而且有效的解决了传统推荐算法中存在的数据稀疏性问题和冷启动问题。但是,现有的基于嵌入和基于路径的知识感知推荐算法都存在各自的局限性,并且在使用知识图谱作为辅助信息时并未考虑知识图谱的不完整性。为了解决上述问题,本文提出了基于注意力机制的知识感知融合推荐算法,通过注意力机制合并知识图谱中的实体获取用户偏好,使用知识图谱嵌入的同时无需人工设计元路径,就可以自动发现从用户历史记录中的项目到候选项目的路径。同时,本文在将知识图谱作为辅助信息引入到推荐系统时考虑了知识图谱的不完整性,提出补全算法,提高算法对于关系的预测能力。融合本文的推荐任务与知识图谱补全任务,实现两个任务的相互增益,最终实现精准的推荐。具体工作如下:一、提出了一个基于注意力机制的知识感知推荐算法。首先,以用户的历史点击项为中心,通过实体传播算法,得到多个与用户相关的实体集。然后,使用知识图谱表示学习将知识图谱中的实体进行嵌入。最后,通过注意力机制合并知识图谱中的实体表示用户,据此预测最终的点击概率。二、进一步提出了一个基于知识图谱补全的融合推荐算法。本文在Trans R算法的基础上提出了一种综合负采样策略,提高模型对于关系的预测能力。通过迁移学习联合推荐任务和知识图谱补全任务,结合推荐任务中的用户-项目交互矩阵提升知识图谱补全算法的性能,并利用补全后的知识图谱提升了推荐的准确性。三、将本文提出的算法与代表性的推荐算法在点击率预测以及top-k推荐这两个推荐场景中进行结果对比,并通过mean rank和Hit@k将本文算法与典型的基于翻译的知识图谱补全算法进行对比。结果显示本文算法均要优于对比算法。最后通过比较推荐任务的F1@10训练曲线以及知识图谱补全任务的Hit@10训练曲线,证明本文推荐任务和知识图谱补全任务之间确实进行了知识的迁移,并实现了相互增益。
其他文献
随着互联网的不断发展,越来越多的网民将社交媒体作为获取信息的主要途径,人们在网络空间中快速、自由地发布信息、社交互动、情感交流。微博作为网络信息传播最具代表性的应用之一,越来越多的网民通过微博来发布、获取和传播信息。微博上蕴含着个人观点的实时评论具有潜在的舆论导向,由此形成网络舆情。然而,网络舆情事件往往是突发的、难以预知的。近年来,对于舆情事件的相关研究层出不穷,现有算法无法高效对网民情感及舆情
直觉模糊知识测度在不确定性问题中有着重要作用,由于直觉模糊集的结构特性,知识测度能够有效弥补直觉模糊熵的不足,更加全面地反映不确定性问题研究过程中产生的模糊性与犹豫性。本文以提高知识测度对复杂问题的解决能力为目标,提出改进HammingHausdorff距离,与理想解法(technique for order preference by similarity to ideal solution,T
随着信息传输及数据存储技术的深度发展,时间序列相关的应用领域不断拓宽,金融、医疗、气象、销售等诸多领域时刻产生着各种类型的时间序列数据,数据规模大且无标签。从这些海量数据里挖掘出具有重大潜在价值的信息,在推动信息技术融合应用与信息产业高速增长、促进数字经济健康有序发展等方面具有广泛而深远的意义。聚类作为一种无监督学习方法,比逻辑回归、决策树、支持向量机等监督学习方法更适合对无标签数据的挖掘分析,因
目前很多依赖递归神经网络的对话系统,基本上都是需要大量密集并且标注完成的数据来进行模型的训练。混合编码网络模型(HCN)是一种面向任务通信的对话系统。HCN让开发者可以通过软件和模板操作来传达自己所学领域的知识,与现有的端到端方法相比,HCN可以在一定范围内提高对话系统训练的实用性和训练效率,但也存在一定的局限性,如由于特定领域的小众与独特性,不具有大量的训练样本,传统的混合编码网络模型在小样本数
知识图谱能提供可以被计算机理解的结构化信息,为人工智能的发展打下坚实的基础。虽然目前已构建许多规模较大的知识图谱,但由于互联网数据量过于庞大,以及数据产生速度之快,导致知识图谱所存储的知识信息是远远不完备的。因此,为了提高知识图谱的完整度,知识图谱补全工作势在必行。近年来有研究者提出知识表示学习,它可以更有效地利用到各种补全信息,极大地提高补全工作的效率,且性能表现优异。但是,目前的知识表示模型也
随着互联网时代的到来,人工智能行业成为了国家经济和科技的引领行业,其中通过面部情绪的人工智能识别已经成为当前社会的一个研究热点。根据现阶段的研究发现,用户在相互交流的过程中,绝大多数信息都是借助表情这个媒介进行传达的,用户在进行表述的同时,面部表情也会发生相应的变化,因此,可以利用用户的面部表情变化进而来识别用户的情感变化趋势。情绪可以用肉眼看不见的许多不同形式表示。使用正确的工具,可以检测和识别
随着互联网和人工智能的迅速发展,图像描述任务在人机交互和儿童教育等领域越来越受到重视。图像描述是通过结合计算机视觉中的特征提取与自然语言处理中的序列输出,将图像内容利用计算机生成自然语言描述,从而完成从视觉到语言的形态转换。不同于目标检测、图像识别等图像理解任务,图像描述不仅要识别出图像中包含的物体对象,还需要准确识别出图像中的背景、对象之间的关系等信息。近年来,研究人员对基于深度学习的图像描述方
学习路径推荐是智能导学系统中的重要组成部分。优秀的智能导学系统能够根据不同用户的不同学习需求与学习能力为用户提供个性化的教育资源,帮助用户在学习较少内容的前提下,掌握目标知识技能。强化学习算法善于解决序列决策问题,因此被广泛应用于学习路径推荐场景中。基于强化学习的推荐技术将推荐问题建模为序列决策问题。相较于将推荐问题建模为分类问题和预测问题的传统方法,强化学习不仅考虑到用户的及时反馈,而且能够考虑
随着网络通信技术、教育数据挖掘分析等技术的快速发展,网络逐渐过渡到web3.0时代,技术的不断更新给教育带来了新的挑战和要求。因材施教、个性化学习的需求剧增。为满足用户个性化课程学习需求,有效的课程推荐方法成为目前的研究热点。现有MOOC平台课程推荐方法,通常由用户历史学习记录,获得其主导学科领域来刻画用户偏好模型,进而完成推荐。该推荐方法在主导学科领域课程推荐中具有良好的推荐效果。但用户常常需要