基于水平集与卷积神经网络的心脏MRI图像分割方法及系统

来源 :南京理工大学 | 被引量 : 0次 | 上传用户:chenwoyu
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前,心脏疾病是造成人类非自然死亡的主要原因之一。而针对心脏病理的研究与治疗往往需要依靠大量的心脏成像手段。作为一种常用的成像方式,核磁共振成像为心脏疾病的诊断和治疗提供了重要信息,很多临床参数需要通过分割MRI图像中的心室区域得到。临床上,分割通常由专家手动执行,不仅费时耗力,而且还存在很高的观察者间差异性。因此,开发快速、精准、可重复以及全自动的分割算法对心脏及其疾病的研究有着十分重要的意义。虽然研究者们已经提出了大量的分割算法,但关于心室区域的分割仍是具有挑战性的难题。本文针对左心室图像分割进行了系统性的研究,具体工作与主要成果如下:(1)提出了一种基于目标定位与保凸性水平集的左心室分割方法。首先,使用SBGF-new SPF方法将每个MRI图像分为背景和前景两个簇。然后,为每个连通区域分配不同的连通组件标签,并设计改进的左心室选择方法获取目标初始轮廓。最后,结合轮廓长度约束的保凸性水平集和趋圆性水平集算法控制轮廓演化,从而得到左心室内膜分割结果。在此基础上,构建基于灰度均值约束的保凸性水平集分割方法,并以已分割的左心室内膜区域为初始化轮廓,得到左心室外膜的分割结果。实验结果表明该方法相比于其他常用分割方法具有高自动化、少迭代以及高精确度的优点。(2)提出了一种融合卷积神经网络与水平集的分割模型,实现了MRI图像中左心室的提取。该模型主要包括多扩展率稠密层、水平集层和融合层,一方面,通过稠密网学习图像特征并输出一个概率分割结果作为水平集的初始轮廓。另一方面,水平集的迭代结果与神经网络得到的图像结构特征相结合更新稠密网损失函数,进而更新卷积神经网络中的参数。上述过程迭代循环,最终实现卷积神经网络和水平集的联合学习,提高目标区域分割的精确度。实验证明该方法相比于单一卷积神经网络或水平集方法更具鲁棒性与精确度。(3)设计并实现了一套左心室图像分割与分析系统。该系统包括图像数据处理模块、图像分割算法模块以及分割结果评估模块三大功能。实现了左心室图像的数据处理、心内膜和心外膜的分割以及分割结果评估等多种功能。
其他文献
驾驶机器人结构灵活、能够适应不同类型的车辆,本文在课题组对无人驾驶机器人车辆横纵向协调控制研究的基础上,为了能够了解被操纵车辆动力学特性的前提下,更好的操纵不同类型的车辆,研究了驾驶机器人车辆的纵向动力学特性学习方法与纵向动态控制。首先,介绍了驾驶机器人的性能指标。并分析了驾驶机器人换挡机械手、驾驶机械腿的结构特征。在此基础上,建立驾驶机器人各机械臂的运动学与动力学模型。接着,介绍了驾驶机器人车辆
视觉里程计(Visual odometry,VO)是通过视觉传感器来获取运动物体的位姿的一种方法,在自动驾驶、机器人自定位和增强现实等方面发挥了重要的作用。由于其低廉的成本和广泛的应用场景,近年来成为视觉领域一个讨论和研究的热点。基于几何法的传统视觉里程计十分依赖特征的选取和匹配结果,并且单目VO还存在尺度不确定的问题。而随着近年来深度学习的兴起,深度神经网络在各种视觉任务中都得了不错的成果,因此
随着社会生产的飞速发展,物流与仓储在供应链中的地位日益提高,传统仓储行业仍存在自动化水平低、功能单一且落地成本高等不足。自动化仓储技术通过计算机信息管理和电气控制,可以有效地完成货物自动存取作业,货物库存的高效管理,对降低物流与仓储成本,提高运输效率具有重要的意义。本文主要研究自动化仓储系统调度优化方法,主要包括基于条码识别的A-ABC货物分类法、货位分配调度优化算法等。本文主要工作及成果如下:(
视觉里程计是无人车导航领域的研究热点之一,它是利用装载在移动机器人上的一个或多个相机采集到的图像信息,对其自运动进行估计的过程。其中单目视觉里程计仅利用单个相机的图像信息,有着低成本、易配置、结构简单以及计算效率高等优点,成为了研究的热点。而近年来深度学习已广泛应用于计算机视觉任务中。因此本文结合深度学习,对单目视觉里程计进行研究。首先,针对深度神经网络中由于深度神经网络在网络层数较深产生的梯度消
在机器学习中,将不同类别的样本数量存在显著差距的数据集认为是不平衡数据集。当代表一个类别的样本数量远低于其他类别的样本数量时,这一个类或多个类在数据集中的代表性可能不足,就会发生类别不平衡问题。然而,为了提高准确性或者最优化相应的代价函数,正确预测多类实例的规则将会收到更大的权重,因此标准的机器学习算法通常偏向于数量多的大类,从而忽略了少类样本,导致小类样本比大类样本更容易被误分类。事实上,从应用
随着深度学习的发展及神经网络在图像识别等计算机视觉任务中取得的显著效果,使得深度学习在诸如目标追踪、目标检测、行人再识别、图像检索等计算机视觉任务中被广泛应用。显著性检测作为一项在其他计算机视觉任务中的数据预处理技术成为了研究的热点,随着视频设备的普及,人们面对的场景往往是动态变化的,所以视频显著性检测成为一个热门的研究方向,它旨在通过特定的算法检测出连续运动的能引起人眼关注的显著性目标。本文将视
热变形是影响数控机床加工精度和定位精度的最大误差源,而滚珠丝杠副作为数控机床的关键功能部件,控制丝杠轴的热变形是提高数控机床精度的关键。丝杠预拉伸作为高效易操作的热变形补偿技术手段,在数控机床领域应用广泛,但目前对于预拉伸量主要按照经验取值,缺乏系统研究。本文以国家科技重大专项为背景,首先建立了滚珠丝杠副预拉伸量与热变形量理论模型,然后对理论模型进行了有限元分析和试验验证,最终建立了不同工况下滚珠
蛋白质-DNA绑定位点是指能够与蛋白质发生相互作用的一段DNA序列,寻找蛋白质-DNA绑定位点可以帮助预测调控基因的功能,了解生物系统中的调节过程和识别致病变异体。更重要的是蛋白质-DNA绑定位点可以帮助设计能够促进或抑制目标基因表达的药物。因此,从DNA序列中精确地识别出蛋白质-DNA绑定位点是一项重要的任务。传统的基于生物实验来识别蛋白质-DNA绑定位点的方法存在成本高且耗时长的缺点。因此,设
本文以提高火箭飞行性能为研究目的,对火箭运动学模型、飞行参数优化方案与优化方法等方面进行研究。针对简单遗传算法容易收敛到局部极小问题,结合罚函数处理约束条件的方法,设计了改进的遗传算法,实现了最大射程和最小起飞质量约束条件下的火箭飞行参数优化设计,对火箭总体设计与制导方案的选择有着重要的指导意义。主要工作内容如下:1.建立了火箭三自由度运动学模型。分析了火箭飞行特点及运动规律,建立了火箭的三自由度
由于能源容量的限制,飞行机器人的任务生命周期短,作业形式单一,给予飞行器着陆栖息和爬行功能是解决此问题极为重要的方法之一。为了使飞行爬壁机器人能应用于外星探索或者混凝土、花岗岩等城市人造粗糙壁面,要求着陆栖息和爬行机构可适应多颗粒、多粉尘和粗糙的非结构化自然表面。然而,目前已有的真空、磁力和粘液等附着方式均无法适用于非结构化表面,爪刺附着方式也仅限于笨重的纯爬壁机器。研究爪刺式飞行爬壁机器人着陆栖