基于机器学习软件的换向器缺陷检测应用研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:GPSCMP
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
换向器的制造质量对电动机的稳定可靠运行至关重要,换向器表面缺陷是其主要质量问题。目前主要采用人工检测的方法,由于汽车行业要求全检,不但质检人员的劳动强度高、检测效率较低,而且检测质量分散度大、检测成本高。机器视觉是实现自动全检的主流方法,但传统的机器视觉检测方法对在生产线上由于工况变化导致的缺陷模式变化的适应性差,即泛化能力不足,且算法开发周期长。本研究采用机器学习的商业视觉缺陷检测软件Vi Di,通过构建特定的模型并进行优化,实现对25种缺陷图像的二分类检测。本方法不但精度和效率高,而且方便部署。具体工作如下:首先,提出换向器缺陷检测的总体设计方案。通过分析检测目标的特点和检测任务的难点,从硬件和软件的角度提出检测总体方案。硬件方面工作包括:搭建检测平台和图像采集系统;软件方面工作包括:构建Vi Di模型、优化Vi Di模型、Vi Di模型部署。其次,研究基于Vi Di的换向器缺陷检测策略方法,实现对多种缺陷混合检测。换向器缺陷种类多、形态多样,导致单一检测算法的精度偏低。本研究提出按机位组合检测和按缺陷特征混合检测两种方法,并构建Vi Di模型,通过准备的数据集和提出的评价指标,测试两种检测方法有效可行。最后根据数据集规模,给出选择两种方法的指导意见。然后,研究换向器缺陷检测的Vi Di模型优化方法。为了提高Vi Di模型的精度,本研究设计了一套优化方案:基于5折交叉验证的Vi Di模型选择、基于Adaboost算法的组合检测器、基于高斯噪声+仿射变换的图像数据增强以及Vi Di模型的参数优化。并且进行实验测试,模型优化后的召回率提升了2.00%以上。最后,部署Vi Di模型并设计实验验证,测试检测效果。为了实现换向器缺陷的快速高精度自动检测,本研究在Visual Studio 2015编程平台上,采用C#语言完成了Vi Di模型的部署工作,通过现场采集的1200张已标签图像数据,对按机位组合检测法和按缺陷特征混合检测法构建的Vi Di模型进行测试,实验结果显示:两种方法的召回率分别为99.17%和98.17%,检测耗时分别为89.6ms/幅和72.8ms/幅,均满足目前换向器缺陷检测任务技术指标要求。
其他文献
无取向硅钢是电力、电子和军事工业不可缺少的重要软磁材料,主要用作各种电动机、发电机和变压器的铁芯及其它电器部件。无取向硅钢极薄带产品传统上主要用于军工及科研领域,随着变频技术的进步及新能源动力的开发,原属小众品种的无取向硅钢极薄带产品应用越来越广泛。提高磁感应强度,降低铁损对于节能降耗具有重要的意义。本文主要分析和探讨冷轧变形量、异速比和退火工艺对无取向硅钢极薄带组织、织构、取向及磁性能的影响,研
镁被誉为“21世纪的绿色工程材料”,镁合金具有密度小,比强度高,散热,减震,良好的耐蚀性、切削和铸造等特点。但是镁合金在耐热、抗高温蠕变、耐蚀等方面性能较差,这些缺点限制着它的广泛应用,无法满足工业发展对材料性能的要求。研究发现,稀土元素具有固溶强化、沉淀强化、提高耐蚀性的作用,可以改善镁合金的高温拉伸和蠕变性能,尤其是Mg-Zn-Gd三元系合金具有优异的力学性能。但是Mg-Zn-Gd三元系相关相
含6.5wt.%Si的高硅钢具有高的磁导率、高电阻率、近似为零的磁致伸缩系数和低的磁各向异性系数,因而具有低铁损、低噪音的特点,尤其在高频下铁损更低。因此,6.5%Si-Fe常被用于制作电机铁芯、高频变压器铁芯和磁屏蔽材料,同时也是实现电气电子设备高速化、小型化的理想材料。本研究以含(Mn,Cu)2S和晶界偏聚元素B的高硅钢为原料,采用传统的热轧、冷轧和退火工艺制备了高硅钢薄带,并通过X-射线衍射
轧制工艺润滑是板带生产的关键技术,在轧制过程中起着十分重要的作用。它不仅可以提高产品的表面质量、控制板形、降低轧制过程的力能参数和延长轧辊寿命等,而且是轧机能否实现高速轧制和生产极限规格产品的关键。近年来,随着高强钢新产品的开发和下游用户日益增长的需求,普通的轧机对轧制980MPa级以上、厚度在0.5mm~0.6mm薄规格的高强钢轧制较为困难,而1 8辊单机架可逆轧机对于高强钢生产的优势表现在:(
铁水预处理脱硫已经被公认为高炉—转炉—连铸流程中降低钢中硫含量的最经济的工艺。目前国内外常用的铁水预处理脱硫方法主要有KR机械搅拌法和镁喷吹法。张廷安教授课题组提出了具有我国自主知识产权的“原位机械搅拌法脱硫”,在其基础上,课题组又提出了“结合机械搅拌利用惰性气体携带镁蒸气底吹直接脱硫”的新方法。针对脱硫新方法的研究,本课题基于相似原理建立水模型装置并进行了实验。实验通过高速摄像机拍照,采用PIV
难混溶合金的液-液相分离粗化过程对合金最终组织和性能具有重要影响。所谓难混溶合金,是指在其凝固相图中存在难混溶区域,熔体过冷到该区域时,会由单一液相分离成两种具有不同组元成分的液相、互不混溶的一类合金。Cu-Co合金就是其中一种,由于其具有优良的巨磁阻效应,作为磁性材料在电子产业中有着广泛的应用。但Cu-Co合金在常规凝固条件下由于难混溶区的存在,易分离成两不混溶的液相,导致偏析甚至分层,从而限制
薄板坯连铸连轧技术是上世纪80年期间成功开发出的热轧卷板生产新工艺。我国自1999年引进第一条薄板坯连铸连轧生产线后,经过17年的发展,薄板坯连铸连轧机组在超薄规格、硅钢和高品质特殊钢等品种的生产领域发挥了巨大的作用。随着薄板坯连铸连轧机组产量、品种、规格的不断拓展和市场经济环境的恶化,用户对其产品也提出了更高的要求。针对本钢薄板坯连铸连轧机组宽度控制精度低和带钢窄尺缺陷等现场问题,本文在理论分析
随着智能制造的高速发展,基于深度学习的钢材表面缺陷识别方法已经成为研究热点,由于受到生产工况、压制设备、材料质量等因素的影响,钢材表面会出现形态各异、分布随机的缺陷,形成小尺寸问题、重叠问题以及缺陷多样性问题,导致缺陷识别困难,目前的深度学习方法在处理复杂缺陷时均值平均精度仅达到71.87%。针对小尺寸缺陷难以识别的问题,提出了基于密集特征金字塔网络(Dense Feature Pyramid N
作为镍基高温合金,GH4169合金因其自身优异的组织与力学性能被广泛的应用于各种领域,该合金用量在高温合金总用量上占据着非常重要的地位。合金在热加工过程中的敏感性使GH4169合金在热变形时难以加工。本文通过对加入稀土后的GH4169合金的单道次热模拟实验,系统性的研究了 GH4169合金的高温压缩变形行为。分析了高温变形行为、热加工图及其组织演变。利用构建的高温本构关系作为数学模型,用于对GH4
贝氏体/马氏体复相钢因其拥有突出的综合力学性能,具备节约资源、能源,减轻零部件质量等众多优点,市场对其的需求量越来越大[1]。本文以缩短生产周期、提高工业生产效率,合理利用资源为出发点,在传统DP(马氏体/铁素体)钢的基础上,进行优化和改进,提出了贝氏体/马氏体复相钢设计思路,通过合理的成分设计,利用轧后快冷+缓冷工艺,获得一定量的具备良好强韧性的贝氏体组织,取代传统DP钢中的铁素体组织,分割奥氏