【摘 要】
:
移动机器人建图研究,是近年来快速发展的移动机器人领域中,最为基础与核心的技术。机器人要实现复杂环境下的精确运行,就要以高精度点云地图作为参照。机器人在环境中的自主运动过程可分为以下几个步骤:由各类传感器采集环境数据,将原始数据传输到工控机的机器人操作系统中,按预定规则进行数据运算处理,得到动作指令或姿态位置数据,其中动作指令被传输到电机驱动部分,姿态位置等数据则进行存储及下一步处理。本文提出了一种
论文部分内容阅读
移动机器人建图研究,是近年来快速发展的移动机器人领域中,最为基础与核心的技术。机器人要实现复杂环境下的精确运行,就要以高精度点云地图作为参照。机器人在环境中的自主运动过程可分为以下几个步骤:由各类传感器采集环境数据,将原始数据传输到工控机的机器人操作系统中,按预定规则进行数据运算处理,得到动作指令或姿态位置数据,其中动作指令被传输到电机驱动部分,姿态位置等数据则进行存储及下一步处理。本文提出了一种以三维固态激光雷达为主要传感器,以GPS(Global Position System)高精度定位仪、IMU(Inertial Measurement Units)惯性测量仪为辅助的多传感器信息融合建图方式。在自主搭建的履带式移动机器人硬件平台上,进行多传感器融合建图方法的验证与改良,通过评估不同融合方式在室外建图中的效果,完成了移动机器人的室外建图验证与改进,在一定程度上提升了移动机器人室外建立高精度地图的性能。本文主要包含三部分内容:(1)履带式移动机器人硬件平台的搭建。此机器人平台的预设应用场景为:室外固定路线的自主巡逻。机器人平台搭载了嵌入式工控机、三维固态激光雷达、GPS高精度定位仪、低延时高清图传模块、超声波避障传感器、IMU惯性测量仪等,以三维固态激光雷达作为主传感器进行基础的建图试验。本文采购的硬件模块充分考虑了复杂的室外环境,具有较好的性能参数与场景适用性。(2)机器人传感器系统理论阐述。基于成熟的ROS(Robot Operating System)机器人操作系统,和搭建的移动机器人硬件平台,将各种传感器采集到的信号,分别发送给工控机进行预处理:由三维固态激光雷达对行进路线的周围环境进行扫描建图,获得三维点云地图;由GPS高精度定位仪按照1Hz的频率获取实时经纬度和高度;由IMU惯性测量仪获得机器人的加速度与方位角等。通过改良的传感器位置布局与信号预处理方式,使机器人具备较好的环境探测能力。(3)多种传感器信息融合处理理论与实验测试。阐述了多源融合基础理论、多源融合方式分类、融合的具体方法与过程等。通过在室外道路的建图试验,对比不同信息融合方法对机器人建图性能的影响,最终完成了机器人室外道路建图的融合方法验证,实现了一定程度的性能改进。
其他文献
伴随着世界更加数字化、信息化,人们开始渴望通信系统领域的相关技术应用可以更加智能化。近年来,一大批深度学习研究学者将目光逐渐深入到军事雷达通信和卫星导航等领域,不断地有基于深度学习的信号调制识别、载波信号检测等算法被提出。然而,深度学习算法复杂,运算起来通常比较耗时。在对相关技术的实际应用中,人们还是希望可以在小巧易携带且节能环保的嵌入式设备上实施操作,并希望能够在低功耗的嵌入式设备上,更快地实现
目前许多无线传感器网络已经用在了环境安全监测中,以至于当安全事故即将发生时安全监测中心能够根据传感器所采集过来的信息提前做出预警;但是当安全事故真正发生时,很多时候安全监测中心并没有提前做出预警或者预警不及时,从而导致人员伤亡。监测系统没有正常运行的原因之一是输入到监测系统中的传感器数据不正确,导致监测系统无法识别出当时环境中的真正情况,从而没有发出预警;因此在监测系统处理对数据进行处理之前,需要
大功率毫米波回旋行波管由于其输出功率大、工作带宽宽、效率高等优点,因此其能够在军事、航空、国防等重要领域发挥重要作用,而要使得回旋行波管正常需要大功率高压电源系统为其进行稳定的供能,因此必须确保大功率高压电源系统工作的稳定性。但因为行波管在工作时可能由于真空度异常而产生打火现象,从而对大功率高压电源系统造成损害,进而影响整个行波管的工作,并且由于大功率高压电源系统其内部关键信号的正常产生与否是确保
近些年来,人工智能在各个领域发展迅速,特别是在物体识别,视频监测等方面发挥着十分重要的作用,人工智能所表现出来的卓越成绩和优秀的学习能力,使得越来越多的学者对人工智能产生了极大的兴趣。人的大脑可以控制生物完成十分复杂的学习行为,受此启发使得神经网络得到了发展,卷积神经网络作为神经网络的重要分支,具有容易实现且易训练的特性,同时,卷积神经网络的运算速度也使其发展面临着更严峻的挑战。因此本文提出了一种
实际生活中我们常常需要对模糊图像进行处理,不管是由相机抖动,还是噪声干扰、本身分辨率不够等原因引起的,都需要一种有效的方法将不清晰的模糊的图像变为清晰的图像。近期,越来越多的卷积神经网络模型被提出,可以快速高效地实现超精度图像重建的功能。经过前期的文献调研,发现快速超分辨率卷积神经网络(Fast Super-Resolution Convolutional Neural Network,FSRCN
卷积神经网络自问世以来一直在计算机视觉领域发挥着重要的作用,随着科学研究的进步和技术的发展,卷积神经网络能够胜任愈发复杂的任务。然而随之而来的后果是模型越来越复杂,参数量也在不断地提升,神经网络的训练和推理需要消耗大量的时间资源以及硬件资源。传统的通用芯片如CPU、GPU平台在处理复杂神经网络模型的问题上遇到了瓶颈,于是人们开始把目光投入到专用加速芯片的研究上。研究人员通过针对性的体系结构设计,采
近年来,智能传感器在人们的生活中占的比重越来越大,多传感器微系统在工业界受到广泛关注。传感器的模拟前端主要包括接口电路和模数转换器(ADC),其作用是将各种携带传感信息的非电或电可转换信号转化为电压\电流信号,最终输出数字二进制码。针对于特定架构和功能设计的模拟前端电路不适用于物联网无线多传感器节点系统,因为这些专用模拟前端无法有效利用高度集成微系统中的共享资源。在可穿戴智能设备、生物医疗电子设备
科技改变生活。普通传感器因为非智能化等原因将不能适应万物互连的智能时代。智能时代对传感器提出了更高的要求,因此智能传感器走入人们的视野。智能时代需要更加便携、高效的智能传感器,智能时代对智能传感器内部集成电路提出更高的要求。因为光互连技术能让智能传感器微型化、精准化、高效化,所以光互连技术将成为集成电路领域的研究重点。单片集成是智能传感器微型化和高效化的另一条件。目前的集成工艺多采用标准互补金属氧
人工智能神经网络已成为当下信息处理技术领域的重要发展方向,相对于软件实现人工神经网络,硬件实现人工神经网络有可以大批量并行处理数据的优势。目前大多数硬件实现的神经元电路由MOSFET器件构成,对于规模越来越大的人工神经网络,电路功耗问题日益严峻。随着器件特征尺寸不断减小,MOSFET器件在纳米量级下短沟道效应越来越严重,使器件功耗和性能恶化,限制了低功耗神经网络的发展。而基于量子隧穿原理的TFET
近年来随着人工智能AI(Artificial Intelligence,AI)领域不断发展创新,深度强化学习异军突起,在工业制造、金融学、心理学、医疗学、汽车自动驾驶等领域得到了广泛的应用。深度强化学习将深度学习与强化学习技术结合,经过近几年的迅猛发展,许多算法相继提出,如A3C(Asynchronous Adavantage Actor-Critic,A3C),TRPO(Trust Region