论文部分内容阅读
密肋壁板结构是一种轻质、高强、节能、抗震的建筑结构新体系,在前期的研究中,已取得了不少的科研成果。然而,作为一种新型结构体系还有很多问题需要进行研究与完善。本文针对密肋壁板结构的主要受力构件——密肋复合墙体为研究对象,就其受力机理、破坏模式、抗震性能、三阶段力学模型、极限承载能力以及基于控制的抗震设计方法等进行了较为详细的研究,完成的主要工作有: 1) 通过对密肋复合墙体在水平低周反复荷载和单调荷载作用下的试验研究,提出了墙体的主要破坏模式;分析了框格与内部填充砌块、墙板与外框的共同工作的受力特点;探讨了不同破坏模式情况下墙体的承载能力、刚度、变形、延性、耗能等抗震性能,并给出了竖向荷载作用下密肋复合墙体的简化力学模型。 2) 通过密肋复合墙体非线性有限元分析,较为真实、简化地模拟墙体内力和变形发展的全过程,描述裂缝的形成和扩展以及墙体的破坏过程、破坏形态和极限承载力水平。同时,针对试验研究的局限性,利用通过验证的有限元分析模型,提供墙体更多的反应信息,从而建立更为有效的墙体简化计算模型。 3) 在试验研究及理论分析的基础上,提出了墙体在不同阶段所采取的力学模型以描述剪切型破坏墙体的全过程受力特点。(1)弹性阶段——将墙体视为一种以轻质砌块为基体,混凝土肋梁、肋柱、外框为增强纤维的复合材料等效弹性板;(2)弹塑性阶段——将墙体视为一个由钢筋混凝土刚架和与之铰接的砌块等效斜压杆组成的刚架斜压杆组合模型;(3)破坏阶段——将墙体视为肋梁严重破损的梁铰框架模型。并在此基础上提出基于损伤的墙体全过程连续抗侧刚度公式。 4) 结合课题组前期的研究成果,就墙体在弹性阶段的复合材料问题,提出两种正交各向异性复合材料计算模型:二次单向纤维加强模型和双向纤维加强模型,并在此基础上,给出了适于工程计算的各向同性墙体简化材料模型。 5) 通过大量的试验,依据极限平衡理论,采用理论与经验相结合的方法,本文提出了偏心西安建筑科技大学博士学位论文受压和偏心受拉密肋复合墙体斜截面抗剪极限承载力计算公式,并就影响墙体斜截面抗剪极限承载力的因素进行了讨论。 6)以应变平截面假定为基础,对密肋复合墙体正截面极限承载力进行研究,即将墙体从初始受荷到正截面极限状态的各阶段的应力、内力及变形计算贯通起来,建立了墙体正截面压弯、拉弯承载力实用计算公式和轴心承载力计算公式。 7)根据墙体斜截面抗剪极限承载力公式和正截面极限承载力公式,给出了墙体最终发生弯、剪破坏模式的判定,并提出了影响墙体最终破坏模式的主要因素。 8)根据试验拟合和理论计算,给出了墙体的退化四线型恢复力模型;提出了密肋复合墙体在地震作用下可能发生的破坏模式和合理的破坏模式;结合抗震控制设计思想,探讨了密肋复合墙体的抗震设计方法,并提出了保证结构计算模型简化及增强结构整体性能的施工构造要求。 本文的创新之处在于: l)密肋复合墙体三阶段力学模型的建立 在试验研究及理论分析的基础上,提出了墙体在不同阶段所采取的力学模型以描述剪切型破坏墙体的全过程受力特点。弹性阶段一一复合材料等效弹性板模型;弹塑性阶段,一捆lJ架斜压杆模型;破坏阶段一一梁铰框架模型。并在此基础上提出基于损伤的墙体全过程连续抗侧冈lJ度公式。 2)密肋复合墙体复合材料计算模型的完善 结合课题组前期的研究成果,就墙体在弹性阶段的复合材料问题,提出两种正交各向异性复合材料计算模型:二次单向纤维加强模型和双向纤维加强模型。并在此基础上,给出了适于工程计算的各向同性墙体简化材料模型。 3)密肋复合墙体非线性数值模型的提出 通过密肋复合墙体非线性有限元分析,较为真实、简化地模拟了墙体的内力、裂缝、变形发展的全过程及极限承载力水平;利用已验证的有限元计算模型,提供更多的反应信息,建立了更为有效的墙体简化计算模型。 4)密肋复合墙体斜截面、正截面承载力实用计算公式的建立及墙体弯、剪破坏模式的判定 建立了偏心受压和偏心受拉密肋复合墙体斜截面抗剪极限承载力计算公式,并就影响墙体斜截面抗剪极限承载力的因素进行了讨论。建立了墙体正截面压弯、拉弯承载力实用计算公式和轴心承载力计算公式,并给出了墙体最终发生弯、剪破坏模式的判定。 5)密肋复合墙体抗震设计方法的完善 根据试验拟合和理论计算,给出了墙体的退化四线型恢复力模型;提出了密肋复合墙体在地震作用下可能发生的破坏模式和合理的破坏模式;结合抗震控制设计思想,探讨了密肋复合墙体的抗震设计方法,并提出了保证结构计算模型简化及增强结构整体性能的施工构造要求。‘—‘忘赢下尸-~,———-一,-一于一一-一,尸一一~,....,,讯r,,曰.迁,,,一_