Ti2AlNb基合金多向锻造微观组织演化行为及机理研究

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:awaydedao132
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着航空航天工业的不断发展,采用高比强度的高温结构材料是现代空天装备技术发展的必然趋势。Ti2AlNb基合金具有高的比强度、良好的高温拉伸和疲劳强度,成为能在650~800℃使用的最具潜力的轻质高温结构材料。但是,由于该合金中金属键和共价键的混合键和方式使其存在本征脆性,实际中需进行热加工变形改善合金组织性能。当前国内外研究中多采用三相区及以上温度区间的热加工,配合跨相区的连续热处理改善合金初始组织,加工方式复杂成本高,且过程中涉及相转变复杂难以稳定控制。目前,针对Ti2AlNb基合金大变形量下的热加工过程,尤其大塑性变形方面研究较少,而利用大塑性变形制备超细晶对于改善合金室温强度-塑性匹配、提升高温性能等具有重要意义和研究价值,同时B2+O两相组织也被认为具有最佳综合性能。因此,本文探索Ti2AlNb基合金在低温(B2+O)相区的大塑性变形以及变形对微观组织演化的影响具有重要研究意义。为了获得Ti2AlNb基合金B2+O相区多向锻造应变累积规律、探索合理的变形参数区间,对800℃下变形过程进行了有限元模拟。结果表明:Ti2AlNb单向压缩过程等效应变存在明显几何对称性,不同位置区等效应变差异较大。Ti2AlNb多向锻造等效应变的累积与压缩次数呈现严格线性相关,单向压缩应变越大,平均等效应变增长越迅速,等效应变累积越快。随着多向锻造道次的增加,变形试样等效应变整体数值分布趋向于不均匀,同时等效应变空间分布也趋向于不均匀。最适宜的变形参数为:应变速率0.02s-1,单工步压下量40%,变形道次为3。研究了变形前后组织形貌、晶粒取向差、物相演变、形变亚结构细化和晶界演化等微观组织演化规律。结果表明:Ti2AlNb基合金经多向锻造变形后获得显著细化的等轴晶粒,但随着变形道次增加,晶粒尺寸快速降低后趋于平稳。变形后小角度晶界向大角度晶界发生转化。(B2+O)相区多向锻造变形后α2相减少、O相增多,合金相组成主要为B2相、O相以及部分残留α2相。变形后微观应变量大幅增加,随着锻造道次增加微观应变量增幅逐渐减小,位错密度先增大后略有减小,这与动态再结晶过程有关。分析了多向锻造变形对板条组织球化的影响,探讨了α2和O相板条的球化机制。发现变形作用下合金板条组织发生动态球化,随着应变量的增大,α2板条组织尺寸逐渐减小、球化程度增大,趋向于发展为均匀细小的等轴组织,O相板条的球化机制主要为剪切分离机制。
其他文献
钽箔在电子工业等领域有着广泛的应用,本文结合导师项目,通过单向拉伸试验、光学显微镜、维氏显微硬度、扫描电子显微镜、X射线衍射技术和电子背散射衍射技术等表征检测手段,研究了不同退火温度对钽箔微观组织、再结晶织构及力学性能的影响规律,并讨论了不同厚度退火态钽箔在拉伸性能上表现出的尺寸效应现象,得到的结论主要有:(1)退火温度对钽箔的显微组织、再结晶织构和力学性能有着显著影响。通过对厚度为100μm钽箔
双金属包覆材料是由两种不同性能的金属结合而成的一种复合材料,它兼具两种组元金属的优点,弥补了各自的不足,有独特的综合性能,近年来得到了越来越多的应用。静液挤压工艺是一种特种挤压工艺,在高压液体环境下迫使材料发生变形。利用静液挤压工艺对双金属包覆材料进行加工,可以提高材料的塑性成形能力,同时也提高了双金属包覆材料的均匀性与界面结合能力,是双金属包覆材料加工变形的有效手段之一。由于静液挤压实验过程繁琐
我国已陆续建立了国家级、省级、地市级、县级康复中心以及大量的社区康复机构,基本上形成了覆盖全国的康复机构网络。但由于缺乏规范统一的行业管理标准,康复机构的发展受到较大限制。深入开展康复机构组织建设与管理研究,创新探索出适合我国国情的康复机构管理模式,规范康复机构建设和服务标准,对于指导我国各级各类康复机构发展具有重要的意义。本指南坚持“以患者为中心”,结合国际康复机构质量认证委员会(CARF)理念
中国低活化马氏体(CLAM)钢由于其良好的力学性能、较高的热导率和较低的热膨胀系数被选为核聚变堆包层模块结构材料之一,但其在550℃时受高温和辐照导致显微结构的不稳定、蠕变强度低,限制了其在聚变堆中的使用。氧化物弥散强化(ODS)钢是一种内部具有极高密度的Y-Ti-O的纳米团簇的低活化钢,这种Y-Ti-O纳米团簇的高温稳定性好,对位错运动具有强烈的阻碍作用,使ODS钢具有很高的拉伸强度、高温蠕变强
熔模铸造工艺复杂且技术要求较高,所以对熔模铸造的设备也必须有高的要求,本文主要针对熔模铸造中型砂监测设备即阻旋式料位计进行研究。阻旋式料位计是精密铸造行业中测量型砂料仓、检测物料高度的重要物件之一,而与其他料位计相比,具有功耗低,效率高、价格低等突出优势并符合机械产品节能高效的发展方向也因适应性强而被广泛使用。但阻旋式料位计的结构刚度较低,在实际使用中易受物料对其轴向载荷、径向载荷及倾覆力矩等复杂
本课题采用了放电等离子烧结技术,在真空条件下基于原位反应制备了一系列复合中间层材料来进一步扩散连接SiC陶瓷。在扩散焊过程中,通过开发原位自生的复合中间层材料,确立合适的连接工艺,表征和分析接头的微观组织和力学性能,进而探索接头中微观组织与力学性能的关系,进一步阐明接头的扩散连接机理。设计并制备出了理化性能及结构与SiC基体相近的陶瓷基复合中间层,通过降低界面处因中间层与SiC母材间热膨胀系数差异
近年来在汽车产业蓬勃发展的背景下,汽车行业所带来的环境污染和能源短缺问题日益凸显,实现汽车轻量化已经成为汽车行业未来发展的必然趋势。激光拼焊板冲压成形技术作为实现汽车轻量化的新型工艺技术,逐渐受到各大汽车公司和研究机构的重视。但是激光拼焊板由于存在焊缝区以及不同的母材区,造成板材各个区域材料性能差别很大。冲压成形过程中易产生破裂、起皱以及焊缝移动等缺陷。本课题以某车型后门内板为研究对象,首先对差厚
纤维素是一种独特的天然高分子聚合物,具有精细的横截面、吸收水分、高强度和耐久性、高热稳定性、良好的生物相容性、相对较低的成本和较低的密度高但机械性能好。通过化学修饰将官能团引入纤维素分子是实现纤维素化学修饰的关键方法之一,这些官能团可以赋予纤维素新的特性而不会破坏其许多所需的固有特性,通过接枝聚合的改性提供了改变纤维素的物理和化学特性并提高其功能性的手段。本论文中利用点击化学反应将螺旋聚苯异腈(P
20CrMnTi是我国常用的渗碳齿轮钢,在汽车、拖拉机和工程机械领域获得广泛应用。S48C钢是我国常用的中碳钢之一,调质处理后具有良好的力学性能。国内推土机用齿轮钢一般选用20CrMnTi,但大模数(m≧8)重载齿轮,20CrMnTi钢渗碳齿轮由于弯曲疲劳性能低,无法满足工艺要求,因此,有必要选择更高弯曲疲劳性能的齿轮钢。本文研究目标是选择22CrMoH和S48C钢分别经渗碳、淬火+低温回火以及中