面向用户个性化兴趣准确表达的推荐算法研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:kg1ksmhz1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前,互联网处处都有推荐系统的身影,如电商、新闻、短视频等等。信息过载情况下,推荐系统能快速从商品库中筛选出用户可能感兴趣的商品,不仅帮助用户高效获取信息,还能提高商家的收益。推荐系统已经成为互联网应用中的核心技术之一,也是推动互联网增长的强劲引擎。本文从推荐系统应用场景中的几个普遍存在的实际问题出发,提出了一些新的思想与算法。具体内容如下:(1)首先,在推荐系统中,常常为每个用户计算一个嵌入向量(Embedding)来代表用户,目前的各种计算方法都难以避免地会强调用户的一些行为特征,造成了对用户基础属性的掩盖,进而使得嵌入向量发生偏差。本文提出一种隔离用户属性和行为的用户双塔嵌入向量模型,利用两个神经网络分别处理用户属性特征和行为特征,以此避免行为强特征的覆盖作用,将两个网络的输出拼接得到用户嵌入向量,由此可以通过控制属性和行为输出维度进而轻松调节用户行为的权重。为了验证效果,本文在国际公开数据集上进行了仿真实验,并与常用的召回方法进行对比分析,实验表明,用户双塔嵌入向量模型具有更好的性能。(2)其次,在相关推荐场景中,即在某商品页面下继续进行推荐相关商品,目前各种解决方案考虑不够全面,难以准确度量用户在主商品条件下的兴趣。本文提出DCNet模型,对其进行显式表达;利用定向交叉层,在线性的复杂度内完成了交叉,最大程度提高了效率;并根据低阶部分和高阶部分特点,分别使用不同的交叉方式,保证模型能够准确地学习到用户兴趣。本文在阿里巴巴公开的淘宝真实数据集上进行试验,并将其与目前主流的点击率预估模型进行对比,结果表明,DCNet模型能够更好地表达用户在主商品条件下的兴趣,拥有更好的推荐效果。(3)最后,在真实场景中,用户行为并不是独立的,而是具有前后时序关系的序列行为,用户的某次行为既受到历史行为的影响,也使得未来的兴趣发生变化。而目前的主流推荐算法都是将每次用户请求视为独立来计算,这就不符合实际的场景需求。针对用户行为在时间序列上建模以及强化学习在推荐场景中解决序列化决策的应用问题,本文提出一套解决思路。首先利用历史数据训练模拟用户,以此为环境来训练模型;在模型中使用商品嵌入向量作为动作表达;在使用嵌入向量的过程中自然引入噪声网络来对动作进行探索。最后,我们使用DDPG模型进行仿真实验,结果表明其比监督学习模型具有更好的性能。
其他文献
随着物联网技术的兴起,人类社会已经进入到一个万物互联的时代,而物联网核心技术则是诸如RFID、UWB等;这些技术同时也深入到了各行各业例如:自动驾驶、智慧货仓、智慧交通、VR体感游戏、导航等;而提供这些服务的前提,就是获取物体准确的位置信息。本文针对上述需求,分析了开源数据集的误差统计特性;其次,指出了经典定位算法模型的不足和局限,提出了一种鲁棒TDOA静态定位算法并讨论了最优基站定位问题和通信距
碳纳米管(cnt)凭借其量子电容特性、高迁移率、截止频率在THz以上的潜能、弹道传输特性,被认为是制造RF晶体管的理想半导体材料,到目前为止,世界各国都致力于高性能cnt FET的研究,然而除了关注于cnt FET本身的直流特性、截止频率、振荡频率外,基于cnt的RF电路芯片验证也是至关重要的,这可以表明其可以代替传统半导体来设计集成电路。本文着重研究了放大器的集成电路,主要的研究方法与成果如下:
随着互联网技术的普及和不断革新,Wi-Fi网络和智能移动终端在人类日常活动中所扮演的角色也越来越重要,同时由于人类的活动大部分都在室内环境下进行,所以人们对基于室内环境的位置服务的需求也不断增大。在室外定位中占据主导地位的卫星导航系统,其信号在穿透建筑的钢筋混凝土墙壁后衰减十分严重,精度也随之衰退到5m至20m,显然这样的定位效果无法满足空间较小的室内环境,因此许多室内定位技术应时而生,而Wi-F
随着量子信息技术的发展,人们逐渐认识到单一量子载体在许多应用场景具有局限性,因此出现了由不同量子载体构成的混合量子系统。以金刚石NV色心为例:NV色心具有很多优点,比如电子自旋态易于读出和操控,室温下相干时间长等,是最受欢迎的固态量子体系之一,在量子计算、精密测量、量子网络等领域具有重要的应用前景;然而,NV色心在原位电学调控方面遇到了挑战,在多比特扩展(即实现芯片上不同色心之间的耦合)方面遇到了
精神分裂症是一种严重的精神疾病,其连接障碍假说提出该疾病与神经元的异常连接有关。静息态功能磁共振成像显示,基于血氧水平依赖信号的自发神经活动在脑区之间相互关联,并组织成空间分离的功能网络,而这些功能网络之间信息交流的异常与精神分裂症中已知的认知功能受损有关。因此,基于磁共振成像的脑网络功能连接分析有潜力揭示精神分裂症的发病机理与指导早期诊断和预防疾病。然而,传统脑网络分析技术仍有亟待解决的科学问题
机器听觉指的是机器通过分析声音信号获取信息的能力。随着智能化时代的到来,机器听觉受到日益广泛的关注。其中一个重要的任务是声音事件识别(Sound Event Recognition,SER)任务。声音事件识别指通过分析音频信号,判断其中的发生的物理事件信息。目前主流的声音事件识别方法是基于深度学习的,但在数据方面存在两个问题:第一,深度学习依赖有标注数据,而声音事件的标注成本很高,难以获得足量有标
近年来,FPGA被广泛用于各个领域,也使得其安全问题变得越来越重要。当前,硬件木马是一种对FPGA有很大威胁的攻击方式,其具备高隐蔽性,强破坏力的特点,在硬件正常工作或者电路出厂测试时都不会被激活,只有在特定条件下才会生效。而其一旦生效,则会破坏用户的电路或者窃取电路中的信息。目前对硬件木马较为有效的检测方式是对网表或RTL代码进行分析,但是对于大部分使用者而言,一般只能接触到比特流文件,想要检测
铁路事业在我国经济建设过程中发挥着重要的作用,传统的货运铁路仍需大量人力资源的投入,而随着计算机视觉的发展,该部分的可优化空间正逐步增加。本文通过针对货运列车定点停车需求的分析,发现该需求可以由计算机视觉中的目标检测技术实现。然而由于实际场景中目标物体会因光照、角度、磨损等因素影响而难以辨认,因此目标检测目前仍是一个颇具有挑战性的任务。而如何设计能够迅速,准确且泛用的特征也成为了该领域的研究重点。
伴随着现代工业生产规模的不断扩大,工业生产已经进入了大数据时代,在日常的工业生产流程中,每一个作业环节都会产生许多需要记录的生产数据值,以此作为衡量产品是否合格的标准。对于许多机器较为陈旧的工厂而言,其设备并不具备相应的数据接口,大多数时候都必须依靠人工识别手动抄录的方式来完成对生产数据的记录,这样高度重复枯燥乏味的工作无疑是对人力资源一种极大的浪费,使得工厂的生产效率大打折扣。为解决这一问题,迫
监察体制改革下对于高校公权力行使者如何监督,学界知之甚少。高等教育领域的公权力监督问题似乎一直游离在人们的视野边缘,尽管实践中已然设立了对高校公权力行使进行监督的相关部门和机构。不仅学界对这一问题关注较少且所提建议有如隔靴搔痒,不得要领,实务人士也或不能很好描述这一实践图景,或基于各种原因而三缄其口。随着国家《监察法》颁布,各级监察委员会有序运转,国家监察体系总体框架初步建成,监察体制改革进入面向