【摘 要】
:
预测和推理未来结果的能力是智能决策系统的关键组成部分。近些年,以深度学习为代表的机器学习预测算法取得迅猛发展,广泛应用于天气预报、自然灾害预警、疾病诊断等领域。然而,在太阳光球磁场演化研究方面,由于缺乏完备的数据集和全面的评价标准,以及演化过程中存在磁结构运动、形变、浮现、消失等多种复杂变化交织的问题,使得直接在时间和空间上预测磁场的演化过程具有较大挑战,所以目前尚无对太阳磁场的演化过程进行预测研
论文部分内容阅读
预测和推理未来结果的能力是智能决策系统的关键组成部分。近些年,以深度学习为代表的机器学习预测算法取得迅猛发展,广泛应用于天气预报、自然灾害预警、疾病诊断等领域。然而,在太阳光球磁场演化研究方面,由于缺乏完备的数据集和全面的评价标准,以及演化过程中存在磁结构运动、形变、浮现、消失等多种复杂变化交织的问题,使得直接在时间和空间上预测磁场的演化过程具有较大挑战,所以目前尚无对太阳磁场的演化过程进行预测研究的相关工作。太阳光球磁场的演化过程包含较复杂的时空物理关系,不仅与太阳大气中爆发的各种磁活动如太阳黑子、太阳风和日冕物质抛射等密切相关,也时刻影响着我们地球的近地太空环境、气候变化和日常生活。为此,本文尝试研究基于时空特征融合的磁场演化过程预测,从数据集制作、网络模型搭建、预测结果全面评价、预测结果视觉增强等多个方面进行一系列研究和探索,主要工作如下:(1)本文制作并公开了磁场演化序列数据集。根据SDO/HMI提供的磁场演化数据的特性,挑选2011年至2015年涵盖太阳南北半球、去除投影效应影响的活动区数据,通过强度裁剪、活动区域再裁剪等多种方法预处理,最终制作了较完备的磁场演化序列数据集,并发布到开源网站。(2)本文提出一种基于时空特征融合的太阳磁场演化大尺度、短时预测算法。该算法基于常规的视频预测模型,首先使用基于时空记忆的LSTM模块充分融合、表征磁场图像序列在时间和空间上相关联的特征,然后使用基于差分时空记忆的LSTM模块对磁场演化过程中复杂的非确定性变化进行处理,最后通过循环形式的网络结构实现对磁场演化过程的预测。此外,结合磁场数据的物理特性,应用相关系数、结构相似性、均方根误差等分析指标和方法,从大尺度磁场结构、运动速度、磁场浮现、精细结构形变和磁中性线的演化等方面对预测结果进行分析和讨论,验证了该算法预测磁场大尺度、短时演化过程的有效性。(3)本文提出一种针对多种退化类型混合的降质图像的复原算法,用于对磁场演化预测结果进行视觉增强。该算法直接融合不同感受野分支的特征,对复原图像的结构进行增强;用注意力机制对不同层级的特征进行动态融合,增加模型的自适应性,降低模型冗余;结合1L损失和感知损失,增强复原图像的视觉感知效果。在DIV2K,BSD500等数据集上的实验结果表明,无论是在峰值信噪比和结构相似性上的定量分析,还是在主观视觉质量方面,该算法均取得较好的效果提升。在磁场预测结果上的实验结果表明,该算法可以提升磁场预测结果的视觉效果。
其他文献
海洋资源的开发利用是未来发展的战略重地,因为水下环境恶劣,人们通常借助水下机器人进行海洋探索,通过对水下视频和图像的研究分析,实现海底考古、海洋军事勘察、海洋牧场养殖、海洋环境监测、海洋生物保护等任务。水下拍摄环境复杂恶劣,大量噪声和失真的产生使拍摄的图像质量低下,导致关键特征信息丢失,因此如何获得高质量的水下图像显得尤为重要。为了获取高质量的水下图像,本文针对常见的自然光照下浅海图像和人工补充照
近几年,随着人工智能技术的广泛应用,句法分析等深层自然语言分析的关注度越来越高。句法分析的主要任务是分析一个句子的构成,并使其可以转化成句法树。通过句法分析,可以解析一个句子的构成词块,词与词之间的关系,从而帮助机器理解自然语言,并运用于机器翻译、自动问答、文摘生成等语义理解领域中。句法分析是自然语言处理的一个经典任务,本文主要研究汉语层次句法分析中的边界问题。首先通过剖析短语结构的层次句法分析的
古代石刻文献在我国历史文化研究中向来都是一项不可或缺的研究内容,具有重要的史料价值,但由于自然环境的侵蚀或是人为破坏,石刻文献的表面出现了若干大小不一、分布不均、形状多变的干扰区域,这不仅影响了人们的观感需求,而且对历史研究造成阻碍。信息化时代的来临,可将重要的石刻文献进行数字化储存以延长文物保存时间,也可通过网络共享的方式对石刻文献进行二次传播,打破时间地点的限制,增加古代历史文化的受众面,使用
芒果表皮缺陷检测是实现芒果的智能化采摘、果实质量分级的重要前提。基于卷积神经网络的计算机视觉技术为缺陷检测提供了可行有效的方法,是目前最为主流的检测方式。在自然环境下,光照的强弱、背景的复杂、果实枝叶茎干的相互遮挡等制约因素下,给芒果表皮缺陷的检测带来了巨大的挑战。采用深度卷积神经网络,可以提取更多的特征,具有更加实时精准的识别效果。因此,本研究采用基于语义分割、实例分割的方法研究自然环境下芒果表
图像融合的目标是将来自同一场景的多幅源图像的互补信息进行融合,生成高质量合成图像。红外图像反映的是目标在红外热辐射下的能量分布,不易受风沙烟雾等复杂条件影响,但其可视性并不是很理想,特别是物体纹理细节信息表现较差。可见光图像主要与目标场景的光反射有关,物体辨识度高,但容易受到外部环境的影响,特别是被遮挡时就无法准确地捕捉目标特征信息。所以,红外与可见光图像融合能够综合两种成像的优势,通过结合二者的
钢水碳含量终点预测作为转炉炼钢重要的一环,准确的预测将直接关系到炼钢效率,有利于减少能源和原材料浪费。由于熔池内不同比例的钢水碳含量能够反映在炉口火焰颜色、纹理形态等信息的变化上,因此采用炉口火焰图像特征提取的终点碳含量预测方法为传统预测提供一种新的参考,但火焰作为一种复杂变化的非结构对象,具有较强的随机性和相似性,给特征提取带来不小的困难,进而影响到终点预测的准确性。针对上述问题,本文将从钢水碳
转炉炼钢生产过程中,终点碳温的准确预报是钢铁产业至关重要的一环,而碳含量的准确预报对于提高钢铁冶炼工艺具有重要的意义。本文针对转炉终点炉口火焰图像相似性高,传统特征方法难以提取区分碳含量相近的火焰图像的关键特征,从炉口火焰图像的颜色特征和纹理特征提取入手开展研究,为提高基于炉口火焰图像特征提取的转炉炼钢终点碳含量预测准确率打下基础。本文的主要研究内容如下:(1)采用基于卷积神经网络火焰特征提取的终
行人重识别是一种利用计算机技术判断摄像机收集的视频或图像中是否存在特定行人的技术,可以自动地对多个不交叉摄像机捕捉的行人图像进行匹配,因而在智能监控系统中发挥着显著作用。但现有的大多数行人重识别方法是在单个有标记数据集上进行训练和测试的,如果在源数据集上训练的模型直接应用到目标数据集上会产生因行人图像风格差异等因素引起的域偏移问题,从而导致最终的识别精度很低。现实场景中已标记的行人样本是极度缺乏的
在当今信息时代的背景和进程下,作为信息技术载体和媒介的印刷电路板(Printed Circuit Board,PCB),从我们日常生活中经常接触和使用的手机、电脑等各类电子产品,到军事中的飞机、卫星等领域都有着广泛的应用。由于工业生产中对PCB更高的要求加之现在的电子产品高度的集成化,PCB板的生产更加细化、走线结构更加复杂,从而导致PCB板带有缺陷的概率大大提升。PCB板必须保证线路连接、线距以
纤维结构是存在于太阳色球层中的一种呈现出喷射状态的线性拉长结构,研究色球纤维的动力学特征能够帮助人们对太阳大气质量平衡以及针状体的演变过程进行更进一步的研究。进行纤维结构动力学特征的研究的前提是对太阳色球纤维进行准确的识别和提取,因此选择一种高效准确的识别方法是当前人们的关注重点。在进行色球纤维识别前,我们首先对纤维图像的特点进行了分析研究,发现当前纤维识别的难点以及存在的问题仍然有许多。因为在色