激光增材制造合金钢硬度超声无损评价

来源 :东北大学 | 被引量 : 0次 | 上传用户:jrong520
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
高速列车制动盘与核电应急柴油机曲轴是核心关键部件,其制造技术长期被各国垄断,而传统减材制造技术制造该类大型复杂金属结构零件存在着生产周期长、成本高、零件制造与性能难控制等问题。研究发展新型制造技术已经成为高铁与核电行业提高产品竞争力的方向之一。激光增材制造是一种基于高能量激光束对金属粉末作用下的层层堆积,成型出结构复杂程度高于传统减材制造工艺的新型制造技术,在高速列车制动盘与核电应急柴油机曲轴的制造领域具有重要应用前景。而激光增材制造金属构件的性能无损评价技术对其成行质量的控制具有重要保障作用,因此,开展激光增材制造构件力学性能超声无损评价方法的研究具有重要科学研究与实际应用价值。本文选用45钢建立硬度超声评价方法,采用不同热处理方式对其热处理以得到不同相组织。通过光学显微镜、布氏硬度计和X射线衍射仪对其显微组织、硬度和应力状态进行分析,利用直接接触法建立声速-硬度数学模型。利用激光直接沉积成形24CrNiMo合金钢样品,采用差热分析仪、扫描电子显微镜、维氏硬度计和万能拉伸试验机研究了成形合金钢组织和力学性能,并采用超声检测系统对其进行超声特性分析,建立两者之间关系,结果表明:超声波在不同状态下45钢中传播时,声速随材料硬度的增加而减小,超声波铁素体中传播速度最大,相反在马氏体中传播速度最小。分析超声波参量与硬度的相关性,建立了波声速与硬度数学模型,并对一未知硬度45钢分别采用纵波和横波数学模型评价,最后误差为2.76%和5.51%,证明了超声评价方法的可行性,并发现纵波检测更为准确。采用超声纵波脉冲回波法对激光增材制造合金钢进行无损评价,分析熔覆层界面及组织类型对超声波传播的影响,并建立增材制造合金钢三向超声速度与硬度的数学模型。超声波沿垂直于YOZ面方向、垂直于XOY面、垂直于XOZ面传播时声速依次降低;沿相同方向传播时,因材料内部弹性模量的变化,退火态、正火态、油淬态和水淬态试块中声速依次变小。建立声速-硬度数学模型评价该材料的硬度,发现三向检测得到结果与实际测量的平均误差为6.5%,证明了利用超声波声速评价增材制造24CrNiMo合金钢硬度的可靠性。
其他文献
近年来,由于Majorana费米子具有非阿贝尔统计的独特性质并且可以应用于拓扑量子信息运算,很多课题组已经对Majorana费米子与超导体异质结的输运性质进行探究,发现在Majorana费米子的边缘态产生的交叉Andreev反射处于受抑制状态等现象。同时在实验中,通过在半导体量子线或s-波超导体中施加磁场,在其两端可以得到Majorana束缚态,该束缚态与电子自旋—一轨道耦合作用、超导电性、Fan
镍作为一种特殊的功能材料,在国民经济中获得了广泛的应用。我国的镍资源实际上处于资源短缺,易处理矿少难处理矿多的状态。世界上约90%的镍仍然依靠火法冶炼工艺进行生产,而目前的湿法浸镍技术工艺流程长、成本高、受矿石本身性质影响大,难以在短时间内实现大面积的生产应用,因此开发经济、高效、绿色的湿法冶金技术对镍冶金具有重大意义。生物浸出技术具有综合利用率高、环境污染小、成本低和工艺简单等优势。本文以吉林某
碳纳米材料因具有优异的力学、电学和化学性能而被广泛的应用于修饰电极的制备。本研究利用碳纳米材料制备了两种新型的电化学传感器用于多种物质的同时测定,主要内容如下:1.基于商品化的氮掺杂多壁碳纳米管(N-MWCNTs),制备了一种新型的能够用于在抗坏血酸(AA)存在下对多巴胺(DA)和尿酸(UA)进行同时测定的电化学传感器。采用扫描电子显微镜对修饰电极的表面形貌进行了表征。采用电化学交流阻抗谱(EIS
作为一种光学调制器件,电致变色器件(ECD)在环保节能方面的应用价值已被大众所肯定。近十年全固态ECD的研究多围绕H+和Li+两种离子传输型器件。H+传输型ECD多采用H+的外部注入、气相掺杂H+以及含H+的凝胶等方式向快离子传输层提供传输离子,这些方法对器件中薄膜匹配性与长久稳定性是个不小的考验,气相掺杂过程不仅复杂且存在危险性。Li+传输型ECD的研究也存在相同的问题。虽有少部分研究已将固态锂
目前,我国还没有在大辊径的连轧机上轧制300系不锈钢的成功经验,如何开发具有自主知识产权的300系不锈钢冷连轧工艺技术,从而突破国外300系不锈钢冷连轧关键工艺的技术垄断,已经迫在眉睫。冷连轧机生产300系不锈钢的存在很多的技术问题。由于奥氏体不锈钢的变形抗力很大、加工硬化系数很高等材料自身的问题,以及冷连轧轧机的辊径大、速度高、非纯油润滑等设备和工艺技术特点,使得冷连轧机在生产300系不锈钢方面
随着环保、节能、安全等现代标准的出现,汽车行业开始朝着轻量化、低成本的方向发展,这就意味着钢材在有效增加强度的同时要具有更好的可成形性能、撞击吸能性、抗凹陷能力以及良好的可焊接性能。而作为汽车车身用材占比极高的双相钢,实现以上性能指标就成了当前的主流研究内容。所以本文针对DP780双相钢的微观组织演变、热处理工艺、成形性能及焊接性能进行了系统的研究,本文的主要工作内容及研究结果如下:(1)利用Th
基于我国29个省份2004—2018年的面板数据,采用工具变量2SLS的分析方法对绿色创新与经济高质量发展之间的线性关系进行研究,运用面板门槛模型对两者之间的非线性关系进行探讨。实证发现:(1)绿色创新能够有效促进我国经济高质量发展,同时两者也存在着非线性关系,绿色创新对经济高质量发展的影响存在显著的门槛效应,跨越人力资本门槛值之后,绿色创新对经济高质量发展的促进作用由弱变强。(2)绿色创新与经济
以WC、TiC等硬质相和Co、Ni粘结相为主要组成的硬质合金性能优异,具有高强度、高硬度,良好的抗剥落性能和化学惰性,作为高性能刀具被广泛应用于现代机械加工领域。随着现代加工领域对于加工效率、环保以及加工材料的复杂化、多样化的要求,以硬质合金作为基体的涂层刀具得到迅速地发展,具有功能梯度结构的细晶硬质合金基体得到深入到研究和应用。涂层材料的多样性使得硬质合金刀具涂层的性能不断优化,是当代高性能刀具
节能、环保和安全是世界汽车工业发展所面临的主要问题,面对日益严峻的环境污染问题,控制汽车排放污染对于节能减排和缓解环境压力至关重要。汽车轻量化是节能减排的重要途径和方法,尽可能地降低汽车重量可以有效地提高动力性、降低燃油消耗和减少尾气排放。所以,高强塑性汽车钢的研究和开发是汽车轻量化的研究热点。相变诱发塑性(TRIP)钢由于具有良好的强塑性匹配、优异的成形性能和较强的吸能能力等而备受关注,是一种非
乳化液泵站是用来向综采工作面的液压支架或普采工作面的单体液压支柱输送压力液体的动力设备,主要由乳化液泵箱体、曲轴、连杆和滑块等组成。乳化液泵站工作过程中,易出现曲轴的磨损和擦伤失效,导致泵站压力下降。乳化液泵站系统为进口设备,价格昂贵,其中单根曲轴价值约10万元,具有较高的再制造价值。据估计,因磨损造成的失效曲轴约占90%,磨损失效曲轴只能被拆下闲置,造成资源极大浪费。热喷涂技术是再制造工程的关键