论文部分内容阅读
遥感变化检测技术是以多源遥感数据为基础,以知识库为辅助对不同时段的目标、现象、过程状态的变化进行探测、识别及分析的计算机图像处理技术,包括多源数据的获取、原始数据预处理、变化信息提取及变化性质确定、变化信息后处理及检测精度评价等内容,其主要目的是通过判断目标是否发生变化,确定发生变化的区域,鉴定变化的类别,评价变化的时间和空间分布模式。随着机器学习以及深度学习的发展,以大数据为核心的深度学习算法已经从传统的自然图像处理,并逐渐扩展到遥感图像处理。本文结合机器学习及深度学习算法,对基于对象分割的卫星图像中物体变化检测和识别的算法开展深入研究,选题具有重要的意义和实用价值。本文将机器学习算法和深度学习算法相结合,以建筑物为研究对象,对卫星影像的建筑物变化检测和识别开展一系列研究,论文主要的研究内容和创新点包括以下几点:(1)对现有的遥感图像数据集进行分析,得到现有的数据集有物体变化检测和识别。针对遥感图像变化检测包含前后时相影像的特征,以前时相为参考,对后时相影像进行图像规定化。针对不同样本库分布不均衡、类间距离过近等问题,提出样本库均衡模块;为了解决样本量不足的问题,提出针对卫星图像的数据扩增算法。(2)针对从高分辨率遥感影像中识别出建筑物变化困难的问题,本文提出了一种基于堆栈降噪自编码器(Stacked Denoising Auto Encoders,SDAE)的建筑物变化检测方法。首先,对于遥感影像匹配误差,对不同时相同一场景图利用尺度不变特征变换(Scale-invariant feature transform,SIFT)算法提取出他们的特征点,进行图像对齐。然后,使用堆栈降噪自编码器提取图像的特征,并采用模糊C均值(Fuzzy C-means,FCM)算法获取发生变化的区域。算法检测效率高,能适应不同源影像的光谱差异。(3)根据建筑物空间特性具有一定规律性的特点,在U-net模型的基础上提出了一种新的模型Widenet(W-net)。并且针对建筑物集群分布和零散分布这两种情况造成的正样本和负样本分布不均衡问题,采用混合损失函数来解决训练数据的不平衡问题。连接两个U-net模型,将其命名为W-net,第一个U-net输出辅助信息,如建筑物拓扑和像素距离。第二个U-net通过将每个像素划分为建筑物或非建筑物来生成建筑物掩码。(4)针对遥感图像覆盖场景大,背景复杂,需要检测算法鲁棒性高,检测效率高,并且克服不同源影像间的光谱差异问题,本文结合上述提出的基于SDAE和FCM的无监督变化检测算法检测出变化区域,然后在变化区域的基础上利用W-net网络进行建筑物识别,结果表明,本文提出针对建筑物的变化检测算法可靠性高,检测速度快。