人机相容型全上肢外骨骼康复机器人设计

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:conansmh
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
国内外中风发病率和致残率都很高,近80%脑卒中存活者会发生肢体残疾,其中上肢瘫痪产生的问题对日常生活的影响更为严重。患者不能独立进行日常活动,要想恢复基本的日常活动能力,患者需接受长时间的康复理疗。当前上肢外骨骼大多不包含腕手,难免错过全上肢的最佳康复时机。因而本课题旨在设计出一款人机相容型全上肢外骨骼康复机器人以实现全上肢的同步辅助康复训练。首先,进行了外骨骼康复机器人的全上肢构型设计。针对中风患者的上肢生理特性与需求,对于肩关节设计并联线驱动外骨骼模块,对于肘部设计拮抗扭簧驱动外骨骼模块,对于腕部设计四边形簧片驱动外骨骼模块,对于手部设计“三明治”簧片欠驱动外骨骼模块,利用针对性设计以使各模块适应人体上肢各关节的生理结构,处理好多自由度关节轴线配置,并优化机构惯量分布。其次,完成了全上肢外骨骼康复机器人的人机相容性与镜像互换设计。重点针对肩部被动运动的生理特性设计了平行四连杆仿生被动补偿结构,针对肘部被动运动生理特性设计了类杠杆仿生被动补偿结构,解决外骨骼与人体关节轴线错位的问题,避免了人机交互负载使患者体验不佳甚至产生二次伤害;针对康复外骨骼的低成本需求,对全上肢机构各模块外骨骼进行了镜像互换设计,能够有效降低设备成本和提高适用范围。然后,研究了全上肢外骨骼康复机器人驱动与传感系统。主要研究了柔顺SEA驱动源的设计做到变刚度柔顺驱动;研究了驱动执行器处的运动传输与转换,利用远程线驱动提高柔顺性和轻便性,优化惯量分布;根据各关节驱动特性需求进行电机选型和传感器选型,并研究了在有限空间内弹性元件与传感器的整合设计,为关节力矩检测反馈创造条件。最后,对所设计的全上肢外骨骼康复机器人进行了仿真研究。分别对肩部外骨骼模块平行四连杆被动补偿结构进行仿真优化,对肘部外骨骼模块弯曲伸展和类杠杆被动补偿结构进行运动仿真,对腕部外骨骼模块簧片弯曲伸展和内收外展进行有限元分析和仿真,对手部外骨骼模块的三明治簧片手指进行有限元分析和仿真。仿真结果表明,所设计的全上肢康复外骨骼经过优化后,各模块均能实现设想的动作需求。
其他文献
结构的模态参数作为结构动力分析的基础,其在结构设计验证、损伤识别和安全评定等方面有着重要应用,结构模态参数识别一直是结构健康监测领域的研究热点之一。目前的模态参数识别方法中,随机子空间法因其诸多优点在实际工程中得到广泛应用,但是该方法在参数识别过程中需要大量的人工参与,不仅使得识别结果可能存在主观性和差异性,而且费时费力,不利于实现实时在线的结构损伤识别和安全评估。针对该问题,本论文提出并研究了一
水泥作为世界范围内使用量排首位的胶凝材料,由于其生产过程中原材料的不可再生和高能耗特点,寻找水泥的替代材料是当下亟待解决的问题。目前使用最广泛的方法是用工业废渣作为矿物掺合料替代水泥,粉煤灰是一个经典的例子。镍渣是冶炼红土镍矿生产金属镍或镍铁合金过程中的固体废弃物,生产1t镍约产生10t镍渣,历年产生的镍渣大部分处于露天堆积状态,不仅占用土地,还有可能因重金属浸出对生态环境产生污染。考虑到工业废弃
大型土木工程基础设施在助力社会经济发展和提高人民生活水平的同时,其结构的安全性无时无刻不遭受着各种因素的威胁,结构一旦失效往往会对社会造成灾难性的后果。因此,能够及时地识别出结构早期损伤的位置与损伤程度具有重要的意义。随着人工智能的发展以及大数据时代的来临,结构损伤识别也逐步向着智能化迈进。由于实际结构健康监测系统测试信息不完备,传统动力反演方程的求解存在不适定问题,本文研究基于强化学习的结构损伤
目标检测是计算机视觉中的热门方向,随着科技的发展突破,高性能图像采集设备和高清摄像头的普及应用,降低了用户获取包含丰富信息的高清图像的门槛,也带来了更高的计算成本。深度学习相较于传统检测方法,削减大量冗余计算,同时不断涌现更新的优质神经网络提升了对高清图像的检测精度。高清图像以包含大量细节的优势在医疗诊断、无人机侦察、机载舰载等民用、军用领域扮演着重要角色,在某些环境苛刻的场合对设备功耗和体积有着
无人机以其低成本、高机动性等优点在军用和民用领域中均得到广泛的应用。然而无人机的事故率远高于有人机,无人机的坠毁带来经济或军事上的巨大损失,因此保障无人机安全可靠运行已成为当前的研究热点。目前,国内外众多机构均已开展无人机状态监测与评估技术研究。但是,现有无人机的状态监测与评估方法大都依赖地面指控站对遥测数据进行分析,链路传输延迟限制了无人机自主状态评估的实时性。此外,由于体积、重量、功耗等限制,
随着飞行空域的不断扩宽,现有飞行器所面临的点火环境越来越复杂,极端点火环境越来越恶劣。等离子体点火技术作为新型点火方式被广泛应用于强化点火研究。但目前的等离子体点火技术大多停留在研究阶段,缺乏面向实际应用的点火器设计。且现有的点火技术过于注重点火时热效应,点火设计的点火能量不断提高,点火热量已不在是制约点火边界的主要因素,此时通过促进点火时的化学效应可拓宽点火边界,而双频激励等离子体即能保证点火时
石墨烯是一种由碳原子以sp2杂化轨道组成六角型蜂巢晶格的平面薄膜,具有许多优良的性能,其中尤为突出的就是优良的机械性能,这使得石墨烯成为许多领域的减磨材料。天文望远镜中微位移促动器的主要材料是不锈钢,降低其表面摩擦磨损可以有效地保证天文望远镜的精度和稳定性,石墨烯材料成为降低摩擦力的理想之选。本文将通过分子动力学从微观角度详细地探究不锈钢基底石墨烯的摩擦特性。首先,本文先从摩擦材料本身的状态出发,
在中国社会经济快速发展以及城市化比例不断提高的同时,各城市的项目建设用地逐渐紧缺,国家开始着眼于发展地下结构。特别是近些年来各地大力修建地下管廊,可以很好的解决地面道路为铺设管线而反复开挖的问题,避免了资源浪费和保障了城市功能的正常运行。但在地下管廊修建过程中,如何更好的解决结构渗漏水问题一直是值得研究的。目前采用的全预制装配式综合管廊由于存在大量节段拼缝,虽然将弹性密封胶条用于解决管廊节段拼缝防
慢波结构作为行波管放大器的核心零件,由尺寸微小、深宽比大的周期性微结构组成,其尺寸精度、形位精度以及表面粗糙度与电真空放大器的工作性能密切相关。由于慢波结构几何要素微细复杂,尺寸、形位精度及表面质量要求严格,其稳定可靠制备技术已成为制约太赫兹电真空器件发展的瓶颈。本文以颗粒增强型弥散无氧铜作为材料,采用微铣削方法对工作频率为0.34THz的折叠波导慢波结构进行工艺探索,在结合切削仿真和工艺实验对弥
近年来,随着惯性约束聚变装置的不断发展,装置内部激光通量的不断提高,如何保证高打靶精度已经成为这项高新技术研究的主题。由于装置内部存在数目众多的光学元件,在完成激光打靶功能时,高强度通量的激光束穿过光学元件,会引起的装置内部污染物含量的上升,进而导致光学元件损伤并影响打靶精度,所以需要对激光器装置内部的洁净度等级进行控制,并对装置内部存在损伤的光学元件实现自动化在线维护及拆装更换。本文针对倍频模块