论文部分内容阅读
背景:心血管疾病(CVD)仍然是世界范围内死亡和疾病负担的主要致病因素。心肌梗死后功能性心肌组织的大量死亡,以及心肌组织自身有限的再生能力,导致了心脏损伤的不可逆性。由于心梗后,心肌组织很难再生,临床上心梗(MI)的治疗仍然面临巨大的挑战。近年来,心梗后的细胞治疗已经成为一种具有临床应用前景的治疗方法,通过将人源性诱导多能干细胞(hi PSC)定向诱导成心肌细胞(CMs)或内皮细胞(ECs)可获得大量的移植细胞。由于细胞移植后的低细胞滞留率,以及心肌梗死后恶劣的微环境,导致细胞移植物递送效率低下,成为细胞治疗面临的重大挑战。有研究表明,可注射的水凝胶可作为有效的载体,通过微创的方式递送治疗细胞和生物分子,促进组织再生。不同组织的细胞外基质水凝胶在组织再生和修复中具有组织特异性。脾脏在心肌梗死后,可以分泌心肌保护因子,且在胚胎期,脾脏具有造血干细胞巢的功能。目前尚不清楚脾脏细胞外基质是否可用于人体多能干细胞(hi PSCs)的培养,并为细胞移植提供适宜的生存环境以对抗心梗组织缺血微环境。目的:验证脾脏细胞外基质水凝胶是否可能提供诱导多能干细胞(hi PSCs)培养和分化的平台,以获得诱导成熟的内皮细胞(i ECs)和心肌细胞(i CMs)。以及探究脾脏细胞外基质水凝胶是否能作为心肌递送的有效载体,负载hi PSCs来源的心血管细胞。方法:1.脾脏脱细胞基质水凝胶的制备与表征取猪的脾脏组织进行脱细胞、冻干、酶消化处理后,制备可注射的Sp Gel。通过H&E、Masson’s染色和样本内残留DNA浓度测定证明脾脏组织成功脱细胞。通过Picrosirius Red,Verhoeff’s和Alcian Blue染色验证Sp Gel内蛋白成分。通过蛋白质组学分析鉴定Sp Gel中组织特异性蛋白成分。扫描电镜分析凝胶的微观结构。用流变仪测试Sp Gel的粘弹性。通过CCK-8细胞毒性实验和皮下移植实验检测凝胶的细胞相容性和生物降解性。2.脾脏脱细胞基质水凝胶对hi PSCs体外培养和向内皮细胞、心肌细胞的分化影响通过流式细胞术、免疫荧光染色和q PCR分析,证明hi PSCs在脾脱细胞基质水凝胶上向i ECs诱导分化。通过扫描电镜(SEM)分析了纳米纤维凝胶表面的i ECs形貌。通过成管实验验证Sp Gel上诱导分化的i ECs是否具有内皮细胞功能。3.脾脏脱细胞基质水凝胶对hi PSC向心肌细胞分化的影响通过免疫荧光染色和q PCR分析,证明hi PSCs在脾脏脱细胞基质水凝胶上定向诱导分化为i CMs。通过扫描电镜(SEM)观察凝胶上i CMs的形貌。检测Sp Gel水凝胶上诱导的i CMs的收缩频率和电生理特性。通过透射电镜对分别在Sp Gel水凝胶上、Matrigel胶上诱导分化的i CMs的超微结构进行表征。4.脾脏脱细胞基质水凝胶包埋对H2O2的细胞保护作用将在脾脏脱细胞基质水凝胶上诱导成熟的i ECs和i CMs消化下来,包裹在纳米纤维状的Sp Gel中进行3D培养。加入200μM H2O2至培养体系,体外诱导细胞氧化应激损伤,双氧水处理2 h后,活/死细胞染色观察Sp Gel对i ECs/i CMs抗氧化应激的保护作用。Sp Gel包裹和无Sp Gel包裹的细胞经H2O2处理后,用透射电镜观察细胞的超微结构。5.脾脏脱细胞基质水凝胶联合hi PSCs来源的心肌细胞、内皮细胞治疗小鼠心梗建立小鼠急性心肌梗死模型,探究Sp Gel联合i ECs/i CMs注射后,心梗区的细胞滞留率,以及Sp Gel-i ECs/i CMs联合治疗对于心功能的修复作用。通过小动物活动成像检测移植细胞的滞留率。H&E染色和免疫荧光染色比较PKH26标记的i ECs/i CMs在Sp Gel-i ECs/i CMs组和PBS-i ECs/i CMs组中的心梗区滞留率。4周后对小鼠行心脏超声检测,评估各治疗组对心功能修复的影响。通过Masson染色法比较不同组的心肌纤维化程度。通过免疫荧光染色,比较不同治疗组梗死区域的血管新生情况。6.基因修饰的过表达CCL22的hi PSCs募集Treg细胞通过构建过表达CCL22的慢病毒载体,在体外转染hi PSCs。通过q PCR分析和细胞免疫荧光染色鉴定CCL22在m RNA水平的表达。ELISA验证hi PSC-CCL22细胞培养上清中CCL22的分泌。Transwell趋化实验检测hi PSC-CCL22细胞培养上清对Treg的趋化作用。为了验证hi PSC-CCL22细胞的多向分化能力,我们诱导hi PSC-CCL22细胞向心肌细胞和内皮细胞分化。结果1.我们成功研发了一种脾脏脱细胞基质来源的,温敏性的纳米纤维水凝胶(Sp Gel),可在37°C孵育下成胶。H&E染色、Masson染色和样本内残留的DNA浓度测定均证明无细胞残留。Picrosirius Red染色,Verhoeff’s染色和Alcian Blue染色分别证明Sp Gel保留了胶原蛋白,弹性蛋白和糖胺聚糖(GAGs)等成分。Sp Gel蛋白组学分析鉴定出1481种蛋白。GO富集分析表明,Sp Gel高表达与细胞外结构组织、小分子代谢过程、细胞外结构组织、细胞底物粘附、细胞连接组织、细胞迁移等生物学过程相关的蛋白。KEGG富集分析表明,细胞凋亡、缝隙连接、紧密连接、粘附连接、局灶性粘连、心肌收缩、CMs中肾上腺素能信号通路和Wnt信号通路相关蛋白在Sp Gel中高表达。在扫描电镜下观察,Sp Gel具有多孔的纳米纤维结构,平均纤维直径为66.67±10.60 nm。水凝胶流变学实验中,通过快速升高温度(从4℃到37℃),实现了Sp Gel快速凝胶化的过程。CCK-8细胞相容性试验证实了Sp Gel具有良好的生物相容性,皮下移植实验表明Sp Gel是可降解材料。2.免疫荧光染色证实了hi PSCs(OCT4+)在Sp Gel包被培养皿上培养,可维持其细胞多能性。Sp Gel上的hi PSCs可以有效分化为i ECs(CD31+,v WF+)。流式细胞仪分析显示,通过定向诱导内皮分化,CD31+/CD144+双阳性的内皮细胞,比例由诱导分化前的0.05%增加到分化后的94.6%。q PCR表明i ECs低表达干细胞多能性标志物OCT4,高表达内皮细胞特异性标志物CD31、CD144、v WF和CDH5。扫描电镜观察到诱导的内皮细胞粘附在凝胶上,与细胞基质相互作用。Sp Gel上诱导的i ECs成管能力和HUVECs无明显差异。3.免疫荧光染色显示i CMs高表达心肌细胞标记蛋白,如α-actinin、c Tn T和MLC2V。q RT-PCR同样证实了i CMs高表达心肌细胞标志物MYL3、SLC8A1和TNNT2。电镜下观察i CMs,心肌纤维束排列紧密、整齐。相对于传统的Matrigel包被的诱导方法,Sp Gel上诱导的i CMs收缩幅度更大,搏动频率更高(约60次/分钟),传统诱导方法心肌搏动频率约10次/分钟。透射电镜下观察,Sp Gel上诱导的i CMs可见明显的肌节、z线结构和缝隙连接,而传统的Matrigel诱导的i CM肌节紊乱,未见z线结构。4.伪彩处理的扫描电镜图像和H&E染色可见Sp Gel中i ECs/i CMs的形态和分布。共聚焦显微镜采集图片发现共培养体系中,i ECs(红色,hu CD31)和i CMs(绿色,α-actin)之间的细胞连接和相互作用。活/死细胞染色结果表明,H2O2处理2 h后,i ECs/i CMs在Sp Gel内的存活率显著提高(p<0.0001)。透射电镜下观察Sp Gel H2O2处理过的细胞,无Sp Gel组细胞结构破坏、空泡化和坏死。而Sp Gel组的细胞未出现严重的结构畸形,胞浆中可见自噬空泡。5.小动物荧光活体成像结果显示,Sp Gel负载i ECs/i CMs移植后第7天,Sp Gel联合注射组细胞滞留率显著提高(p=0.0014)。H&E染色和免疫荧光染色表明,移植后的第1天,Sp Gel-i ECs/i CMs的细胞滞留率大约是PBS-i EC/i CM组的3倍。移植后的第7天,Sp Gel-i ECs/i CMs的细胞滞留率大约是PBS-i EC/i CM组的7倍,表明Sp Gel可有效提高心梗区移植细胞的滞留率。4周后,对各组小鼠行超声心功能检测。Sp Gel-i ECs/i CMs治疗组的左心射血分数恢复最好,约54.53±2.09%,PBS-i EC/i CM组为46.88±1.73%。单独Sp Gel注射组为39.91±1.34%比PBS注射组(31.68±2.17%)稍高。免疫荧光染色表明Sp Gel-i ECs/i CMs治疗组动脉(α-SMA+)和毛细血管(CD31+)密度明显高于PBS组,证明Sp Gel联合i ECs/i CMs治疗可促进梗死区新生血管形成。6.成功构建了过表达CCL22的慢病毒载体,在体外转染hi PSCs实现CCL22基因过表达。q PCR分析证明CCL22在m RNA水平高表达。细胞免疫荧光染色证明CCL22在细胞水平的表达。ELISA验证CCL22可以以外分泌蛋白形式进行表达。Transwell趋化实验验证hi PSC-CCL22细胞培养上清对Treg的趋化作用。免疫荧光染色分别验证了hi PSC-CCL22向心肌细胞和内皮细胞高效分化。结论:我们制备了一种温敏性、纳米纤维状脾脏脱细胞基质水凝胶(Sp Gel),可维持hi PSCs的培养并促进其分化。体内移植实验表明,Sp Gel负载i ECs/i CMs治疗可有效提高移植细胞的滞留率,促进心功能修复,抑制心肌纤维化,促进缺血区血管新生。此外,Sp Gel还可以作为3D打印类器官的生物相容性生物墨水。本研究表明Sp Gel可作为hi PSCs培养和分化的新平台,并为再生医学研究和临床应用提供一种可注射的细胞移植的载体。