【摘 要】
:
随着能源危机与环境污染等问题日益加剧,对新能源的开发利用与储存愈发受到关注。相变储能是热能储存中的一种有效方式,具有储能密度高,工作温度稳定等优点,但所使用的相变材料导热性能差,且在固液相变过程中存在泄漏等问题,制约了其在能源储存领域的推广和应用。针对以上问题,本文借助实验和分子动力学模拟对纳米碳材料/石蜡定型复合定型相变材料进行研究,对其相变特性与微观导热性能进行探讨。主要研究内容和结论如下:1
论文部分内容阅读
随着能源危机与环境污染等问题日益加剧,对新能源的开发利用与储存愈发受到关注。相变储能是热能储存中的一种有效方式,具有储能密度高,工作温度稳定等优点,但所使用的相变材料导热性能差,且在固液相变过程中存在泄漏等问题,制约了其在能源储存领域的推广和应用。针对以上问题,本文借助实验和分子动力学模拟对纳米碳材料/石蜡定型复合定型相变材料进行研究,对其相变特性与微观导热性能进行探讨。主要研究内容和结论如下:1、采用分子动力学研究了纯石蜡在固态、液态和晶体三种状态的传热特性,探讨了温度对晶体石蜡界面传热的影响。研究结果表明:石蜡分子的排列有序度是影响热导率的关键因素;晶体石蜡的高度有序排列,导致了块体之间存在界面热导,而由于范德华力的作用,随着温度的变化界面之间存在热波动性,从而导致了热流在单分子水平上存在热耦合与热解耦特征,且界面热耦合有利于界面传热。2、通过实验和分子动力学模拟研究了石墨烯/石蜡定型相变材料的相变特性和导热性能。采用实验制备和表征了石墨烯纳米片/石蜡复合定型相变材料,对比分析了溶液混合法、真空吸附法和真空混合法三种方法制备的复合定型相变材料的热性能,并探讨了不同石墨烯纳米片含量的复合相变材料的光热转换性能。研究结果表明:三种方法中,溶液混合法制备的样品其石蜡的吸附量最大,达到84.67%,相变潜热值最高、热循环稳定性最好、热导率相比纯石蜡提高了11.64倍;石墨烯纳米片的加入明显提升了石蜡的光热转换性能,光热转换效率最高提高了2.4倍。采用分子动力学模拟了石墨烯片对石蜡的吸附过程,探讨了由石墨烯片组成的不同密度的多孔石墨烯结构对石蜡的吸附行为、相变和导热特性。研究结果表明:不同复合结构中的石蜡质量分数随多孔石墨烯密度的增加而降低。由于石墨烯与石蜡之间的相互作用,石墨烯片周围存在致密相,对石蜡的潜热和拉伸、弯曲行为有负面影响,但对扩散行为影响不大。密度越大,复合相变材料储热效率越低,与理论值的偏差也越来越低。但致密相的存在会使得该区域的石蜡分子有序度提高,且石墨烯构成了导热网络,进而使得热导率增加。综合考虑,多孔石墨烯结构的最佳密度为0.5 g/cm~3,复合材料潜热为84.17 J/g,导热系数为0.51 W/(m·K)。3、采用分子动力学研究了石蜡自发填充碳纳米管形成的纳米胶囊的传热特性,探讨了不同管径对传热的影响。研究结果表明:界面热导与轴向热导率随管径的变化与石蜡质量分数有关,与管径无关;石蜡质量分数越高,界面热导与轴向热导率越小。另外可以通过加压来提高填充度,填充度的增加导致相变潜热增加的同时会使界面热导与轴向热导率降低。
其他文献
荧光成像技术因其能够进行可视化、高灵敏、实时信号反馈等优势,被广泛应用于生物医学成像研究。近红外荧光染料的发射波长较长(650-900 nm),具有较低的背景干扰、较好的组织穿透能力、较小的光损伤等亮点促进了探针在生物医学方面的应用,但是目前所报道的近红外荧光探针存在光稳定性差、斯托克斯位移小、成像信号单一等问题,基于此,本论文主要围绕着生物活性分子的检测设计开发了一系列近红外荧光探针,经过对其光
二维纳米材料,尤其是过渡金属硫族化合物,由于其令人着迷的光电性能,可调的带隙,出色的柔韧性和稳定性而引起了越来越多的关注。二维二硫化钼(MoS2)凭借独特的谷底偏振光学响应,快速的光学响应速度以及在很宽的波长范围内有非常高的光吸收率,使其在光电器件中得到了广泛应用。表面电势与纳米材料的功函数和费米能级有关联,对研究载流子浓度,电荷传输,接触势垒和纳米器件的设计具有重要意义。因此,研究二维MoS2的
近年来,锂离子二次电池在能源储存领域取得了巨大的成功,推动了人类社会的发展。然而,面对锂离子电池关键材料的资源、环境、回收、价格等问题的挑战,发展下一代综合性能优异的电池关键材料非常关键。有机电极材料由于其原料来源渠道广泛、结构灵活且可设计性强、相对较低的成本和环境友好等特点,在电化学能源储能领域受到广泛关注。然而有机分子固有的低电子电导率和高溶解性,极大地限制有机电池的发展。卟啉有机材料由于其具
近几年来,以供电子稠环单元为中心核的吸电子基团-供电子基团-吸电子基团(A-D-A)型非富勒烯小分子受体(NF-SMAs)受到了越来越多的关注。这类NF-SMAs材料由供电子稠环中心核、侧链和吸电子端基构成,供电子稠环中心核的大平面的刚性结构能有效提高分子间-堆积作用,从而改善电荷传输效率,而且,稠环中心核具有较强的供电子能力,可以和吸电子端基进行分子内电荷转移作用,从而达到拓宽材料吸收光谱的效果
生物镁合金具有低密度、适中的力学性能和良好的生物相容性,作为新一代可降解生物医用材料,应用前景广阔,但其过快的降解速率极大地限制了其临床应用。因此,深入研究生物镁合金的腐蚀机理及其影响因素,建立其降解失效的预测模型与方法,可为生物镁合金耐腐蚀性能的改善以及服役过程可靠性的提高提供理论依据。相场方法是模拟材料在各种环境下微观结构演化的一种强有力的工具,本论文以WE43商业镁合金为研究对象,采用相场方
裂纹问题是窒碍激光熔覆进一步推广应用的关键。因而制备无裂纹的覆层一直是表面工程和材料科学领域共同关注的热点。本文针对覆层裂纹这一难点和关键问题,提出声-电-磁多物理场辅助激光熔覆制备涂层新工艺。采用理论分析与实验研究相结合的方法,探究了单物理场与多物理场对熔池凝固过程、覆层开裂倾向、宏微观组织形貌以及熔覆涂层显微硬度、摩擦学性能和抗腐蚀性能的影响规律。主要内容与结论如下:首先,综述了激光熔覆裂纹的
随着全球疫苗需求的日益增长,特别是近两年新型冠状肺炎病毒的大爆发而引发的新冠疫苗需求暴涨,国内外对于一次性预灌封疫苗注射器的需求呈现急剧增长态势。预灌封注射器自动组装机构是将预灌封注射器进行组合装配的高速自动化设备。该设备的关键执行机构是套管装配机构。合理的套管装配机构结构设计及其运动精度可靠性决定了预灌封注射器装配成品品质。本文以套管装配机构为研究对象,对其进行结构设计,开展多因素影响下的机构运
滚动轴承作为旋转类机械设备中的关键零部件,有着精度高、负载大、结构紧凑和质量稳定可靠等优点,在交通运输、电力、航空等领域中应用甚广。但是滚动轴承在实际运行条件下容易发生各种各样的故障。因此研究其故障检测和诊断方法对于降低维护成本、提高工作效率和预防系统故障的作用是不言而喻的。滚动轴承诊断过程中的关键在于如何有效地从其信号数据中完成特征获取、特征融合和智能识别分类等一系列操作。本文为了提高滚动轴承状
微机电系统(Micro Electro-Mechanical Systems,MEMS)是一种尺寸达到微米甚至纳米量级的装置,在航空航天、通讯技术、生物医学以及国防军事等领域都得到广泛应用。但是微机电系统的零部件在运动过程中由于尺寸效应和表面效应会出现严重的摩擦磨损,并且主要材料单晶硅及其化合物的摩擦学性能较差,这严重制约了微机电系统的发展与应用。因此,对单晶硅进行减摩耐磨处理刻不容缓,自组装分子
镍基高温合金被广泛应用于发动机热端部件,添加Re、W等难熔元素会导致合金中析出拓扑密堆相(TCP),加速裂纹的形成与扩展,降低合金的持久性能。元素Nb能提高镍基高温合金的强度、硬度及塑韧性,但Nb过量时,强度增加减缓但塑韧性急剧下降。本论文围绕含Re镍基高温合金微观组织及Al-Re-Nb三元系相关系展开了研究。通过研究Re、W元素交互作用及固溶-时效处理对镍基高温合金组织的影响,揭示了TCP相的形