【摘 要】
:
目前,随着经济高速发展,城市轨道交通建设进入爆发时期,地铁成网运行日渐完善。在直流牵引供电系统中,由于钢轨自身存在纵向电阻且与大地不能做到完全绝缘,杂散电流的泄漏问题在所难免。本文基于CDEGS软件通过合理的简化和假设搭建了包含地上牵引供电系统和地下地网结构的多区间杂散电流仿真模型。通过设置观测线和观测面可以仿真计算得到各个观测点的标量电位,同时介绍了地中杂散电流的计算方法。首先,搭建了均匀地质条
论文部分内容阅读
目前,随着经济高速发展,城市轨道交通建设进入爆发时期,地铁成网运行日渐完善。在直流牵引供电系统中,由于钢轨自身存在纵向电阻且与大地不能做到完全绝缘,杂散电流的泄漏问题在所难免。本文基于CDEGS软件通过合理的简化和假设搭建了包含地上牵引供电系统和地下地网结构的多区间杂散电流仿真模型。通过设置观测线和观测面可以仿真计算得到各个观测点的标量电位,同时介绍了地中杂散电流的计算方法。首先,搭建了均匀地质条件下杂散电流仿真模型,分析了金属导体和地中杂散电流及电位的分布特性。其中包括:钢轨纵向电流、钢轨对地电位、排流网纵向电流、排流网对地电位、不同土壤深度地中杂散电流和电位分布、列车和牵引变电所等不同位置土壤杂散电流和电位分布。基于以上模型,利用MALZ模块丰富的土壤类型搭建了横断层地质、纵断层地质、斜断层地质、暗河环境以及溶洞环境等复杂地质条件下地铁杂散电流仿真模型,仿真分析了不同地质条件下地中杂散电流及电位的分布特性。最后,根据列车运行参数及环境的变化,仿真分析了地铁杂散电流的影响因素。主要包含行车位置、行车数量、行车功率、行车工况组合等行车条件变化的影响;钢轨纵向电阻、钢轨对地绝缘性能下降、线路参数不均匀、排流柜投切等线路条件变化的影响;同时考虑了埋地金属中杂散电流的影响因素,主要考虑了埋地深度、外覆绝缘层电阻率、排流柜投切以及穿越断层地质的影响。通过以上研究发现:相较于均匀地质条件,杂散电流和电位在复杂地质条件下发生突变,电位主要集中在高阻土壤区域,杂散电流更容易流入低阻区域。溶洞和暗河的存在极大的改变了杂散电流和电位的分布趋势,且暗河环境下地中杂散电流的含量远大于均匀地质条件。行车条件变化时,列车的工况组合对杂散电流的泄漏影响较大,表现为相邻列车处于同种工况时泄漏的杂散电流更为显著。线路条件变化时,钢轨纵向电阻的变化是影响杂散电流泄漏的重要原因,平时应加强对钢轨的保养与维护。当排流柜投入使用时,由于排流网直接与牵引变电所负极相连,使得地中杂散电流和埋地金属中的杂散电流含量急剧增加,平时应该尽量减小排流柜投入使用的次数。埋地金属外覆绝缘涂层相较于裸露时,埋地金属中杂散电流含量较小,因此外覆绝缘层能够降低埋地金属受杂散电流腐蚀的风险。本文主要研究了地铁杂散电流在不同地质下的分布特性和影响因素,为杂散电流的治理和防护提供了理论指导意义。
其他文献
我国水下盾构隧道的建设正朝着大直径化、大埋深化、高水压化、地质条件复杂化方向发展,管片接缝防水的重要性愈发凸显,而传统的单道密封垫防水体系已难以满足日趋严格的防水要求。双道密封垫防水体系目前虽然已在新建的部分高水压盾构隧道工程中开始尝试使用,但其在工程应用过程中仍然强烈依赖工程类比方法完成设计工作,其防水机理、防水性能等方面的规律尚不明晰,尚未形成健全的工程设计方法。本文以江阴靖江长江隧道和甬舟铁
随着西部大开发的推进,大量复杂山区铁路已投入规划建设。其中,川藏铁路作为“最难建的铁路”,全路段最高海拔4400米,全线海拔落差3000多米,沿途地形落差极大,因此在其铁路规划建设中设置长大坡度的线路是不可避免的。当高速动车组通过长大下坡路段时,需进行限速来确保列车的运行安全,而在此过程中产生的再生制动能量会被返送回牵引网,并可能对供电安全造成威胁。因此,本文将围绕动车组经过长大下坡路段时再生制动
工程建设具有耗时长的特点,对于工程物资采购而言也一定程度导致了供应的不确定性,虽然在前期对供应商的选择中进行了多方考量与评价,但仍然无法保证在长期的供应过程中,供应商能够始终持续稳定地供应物资。一旦供应出现中断,会给工程施工进度带来一系列的困扰。故而本文选择对供应中断风险下的公路工程大宗物资采购展开研究。工程项目采购策略分为多种,本文梳理归纳前人的研究发现,双源采购策略相对于其他的采购策略而言鲁棒
新型电缆贯通供电方案是有效减少(或取消)牵引网电分相的方法之一,能够延长牵引供电距离,并有效治理电气化铁路中的电能质量问题,最终能够实现干线铁路和城市轨道线路的互联互通。但新型电缆贯通供电系统采用梯级供电方案,使电缆牵引网结构复杂,并且系统内负荷情况多样,有功功率要首先经过电缆牵引网的各个环节,最终汇聚到列车,而列车发射的谐波也要经过牵引网中的两级渗透,最终反馈到公用电网。在针对电缆贯通供电系统的
当今世界,可充电电池作为储能载体广泛应用于不间断电源、人造卫星、电动汽车等领域。锂电池以其高能量密度、低自放电率和无记忆效应的特点被认为是最具吸引力的可充电电池之一。由于单节锂电池的电压低,容量小,大多数情况下需要将多节电池串联或并联,以满足负载需求。然而,不同的电池单体在电化学、容量、内阻等方面存在细微的差异。电池组内单体电池参数的不均匀性会导致电池单体的过充或过放电,这将降低整个电池组的容量和
三电平半桥双向有源变换器(Dual Active Bridge,DAB)具有高压和双极性输出特性,是一种适用于直流微网等应用中对地具有正负两极输出要求的拓扑。本文以双极性直流微网为研究背景,以三电平半桥DAB变换器为研究对象,针对不平衡负载条件下变换器支撑电容电压不均衡的问题,提出了调制均压控制策略与周期组合序列控制策略,实现了负载波动与切换时平衡电容电压的作用。全文具体从以下几个方面展开研究。首
磁感应式无线电能传输(Inductive Power Transfer,IPT)技术通过非物理接触的方式实现电源与负载之间的能量传递,具有实用性、便捷性以及特殊场合的适用性而受到越来越广泛的关注和应用。然而在许多应用场合,松耦合线圈原副边的相对位置较为灵活,线圈参数极易发生改变,导致传输功率发生较大的波动,输出特性发生较大改变,大大降低了无线电能传输系统的可靠性与实用性。随着IPT技术的不断成熟,
风电机组的偏航控制系统通过电机驱动机舱旋转,保持桨叶对准风向,以捕获最大风能。早期,偏航控制系统多采用电机直投方式驱动机舱,当机舱与风向角度相差超过15度时,直接投入驱动电机以调整偏航角度,这种直投方式必然带来电流冲击和机械冲击。电流冲击会导致开关跳闸,无法偏航,只能通过人工恢复;机械冲击导致齿轮磨损,使得偏航系统机械寿命缩短,维护成本增加。采用变频驱动偏航电机可以消除直投电机带来的问题,本论文开