基于纳米球光刻技术的场发射阵列阴极制备与性能研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:lwl13751412186
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
场发射阵列阴极(FEA)具有瞬时启动、低功耗、室温工作等优点,用作X射线管的电子源可以有效减小器件尺寸、提高器件性能。Si-LaB6复合型FEA有效结合了硅(Si)成熟的微纳制造工艺和硼化镧(LaB6)薄膜优异的场发射特性,是一种很有潜力的场发射阴极结构。传统的FEA制备一般采用光学光刻、电子束光刻(EBL)等微纳图形技术,集成度难以突破106 tips/cm2,成本高、场发射性能也难以提升。纳米球光刻技术(NSL)是一种低成本、高产量、高集成度的微纳图形技术,制备的FEA集成度至少在107tips/cm2以上,有望通过提高阵列密度进一步提升场发射电流密度,大幅降低FEA制备成本,有助于FEA的商业化应用。论文首次采用NSL技术制备Si-LaB6FEA,为LaB6场发射阴极领域降低成本、提高性能提供了新的思路。论文围绕采用NSL技术制备出符合性能要求的Si-LaB6 FEA的工艺流程和参数进行了一系列的探索性的工作,具体包括:1.Si-LaB6 FEA的理论设计。论文选择了柱形发射体结构和相应的工艺方案;设计FEA阵列密度,NSL技术选择使用2μm直径的微球;采用Opera-3D建立了Si-LaB6 FEA模型,并模拟了阴极发射体高度、直径、LaB6厚度对场发射性能的影响,并得出了对实验具备理论指导意义的结论:(1)Si-LaB6 FEA主要依靠柱体顶端LaB6薄膜边缘产生场致发射;(2)理想阴极发射体直径为0.8μm,高度至少为1.7μm;(3)LaB6的厚度对场发射性能影响不大2.采用NSL技术制备Si-LaB6 FEA。设计了工艺方案,并根据相关预实验结果选择合适的工艺方案;论文对每个工艺步骤及部分关键工艺参数进行了讨论,最终制备出阴极发射体直径约0.8μm、高度约为2.2μm、阵列密度约为2.68×107tips/cm2的Si-LaB6 FEA,并进行了表面形貌的SEM表征。3.使用自制的二极管测试装置和测试电路对Si-LaB6 FEA样品进行场发射性能测试。测试结果表明:在真空度8×10-5Pa下,Si-LaB6 FEA样品测得最大场发射电流密度458mA/cm2,并根据F-N特性曲线计算出场增强因子为4.64×104,比现有报道的使用光刻技术制备的Si-LaB6 FEA阵列密度多一个数量级,总体发射电流高出四个数量级。
其他文献
光学相干层析成像(Optical Coherence Tomography,OCT)是一种基于光学低相干原理的高分辨率无损检测技术,常用于生物医学成像和工业无损检测领域。传统的谱域OCT(Spectral domain OCT,SD-OCT)系统成像速度和相位稳定性受限于机械扫描,本文提出了基于线光源照明成像的并行SD-OCT系统。并行SD-OCT系统无需任何机械扫描,利用面阵CMOS相机和线光源
超宽带(Ultra-wideband,UWB)系统因其高定位精度、低功率消耗以及高传输速率等优势,在学术界得到了广泛的关注与研究。其中的射频前端电路作为UWB系统的关键组成部分也成为了学术界研究的热点领域。本文针对UWB通信系统射频前端中的超宽带双向放大器进行了研究,设计实现了一款覆盖3.1-10.6 GHz的超宽带双向放大器芯片。论文在放大器带宽拓展研究的基础之上,采用负反馈带宽拓展技术和宽带噪
微型扑翼飞行器(FWMAV)由于在低雷诺数环境及非定常流体中的良好飞行性能使其在小尺度时相比固定翼和旋翼飞行器拥有更多优势,当前对于微型扑翼飞行器的成功研究主要集中在两翼仿鸟微型扑翼机上,而相关研究表明四翼对拍扑翼可以产生更多且更稳定的升力,机身起伏波动更小,更加适合搭载视觉传感器、图像视频传输设备等,具有更大的飞行载荷、更好的飞行能力及更复杂的任务执行能力。本文在前人研究基础上,受自然界飞行生物
随着现代通信网络的发展,自由空间光通信(free space optical communication,FSO)作为一种户外无线通信技术,在通信领域具有广阔的前景,在现代通信中扮演着越来越重要的角色。当今,自由空间光通信可以实现每条数据链路400Gbp的高数据速率,为在不能快速安装光纤电缆的地方实现高带宽数据传输,提供了非常有吸引力的解决方案。在自由空间光通信系统中,光学天线很大程度上决定了通信
量子计算和量子通信离不开量子比特的实现、操作和控制,而量子比特广义上对应于二能级量子系统。光子作为量子计算中实现处理信息的有效系统,它传播快,不与环境相互作用且操纵简单。要实现和操纵量子比特,可以求助于双阱势系统。例如,基于双阱势的量子比特已经被超导电路(SQUID)证明。因此我们建立了一种新的光学双阱势系统,然后研究这种光学双阱势系统存在的量子力学效应,即光子隧穿,最终为光量子比特的物理实现提供
声涡旋是一种具有螺旋相位,中心声强为零的沿中心轴螺旋前进的波束。涡旋波束独特的声场特性以及其特有的轨道角动量使其在粒子操控和声学通信领域中都展现出广阔的应用前景。基于此,本文重点围绕声涡旋产生机理、涡旋声场影响参数、轨道角动量编解码原理与实验方法等方面展开了研究,以探索一种新型的声学通信方法。根据声涡旋的基础理论,对涡旋声场产生机理和影响参数进行了分析和研究。建立了16个阵元组成的阵列式声涡旋声场
有机薄膜晶体管(Organic Thin-Film Transistor,OTFT)作为现代电子技术的关键部件之一,其本身所具有的良好生物相容性和可柔性化特点赋予其在可穿戴电子产品领域广泛的应用前景。其中,基于OTFT的气体传感器具有材料设计灵活、室温工作、可实现多参数探测等优点,可以作为有毒有害气体的优良检测平台。近年来,研究者主要围绕OSCs材料分子设计、器件结构、制备工艺、功能层与界面调控四
被动锁模光纤激光器具有输出功率高、结构紧凑、稳定性好等优点,被广泛应用于生物医学、材料制造、高速光通信等领域。基于非线性环形镜的锁模光纤激光器因其结构灵活、构建成本低以及易实现全光纤化等优点得到了研究者的关注。非线性环形镜包括非线性光纤环形镜(NOLM)和非线性放大环形镜(NALM),基于非线性环形镜的光纤激光器可用于输出高能量的耗散孤子共振(DSR)脉冲,其脉冲能量能达到传统孤子的四个数量级以上
光调制器通过电信号来动态调控输出光信号,在高速、长距离光纤通信系统中占据重要的地位。近些年来硅基片上光互联技术已经成为了调制器的一个重要的发展方向,因此如何获得更高性能的电光调制器已经成为集成光电子及应用市场领域的研究热点。为获得高速率、高带宽、低损耗的调制器,一些典型的电光材料如铌酸锂、有机聚合物、石墨烯等陆续被提出。尽管光调制器在近些年来取得了巨大的发展,但绝大多数仍不可避免的要面对偏振敏感的
热核理论是现代数学中越来越重要的研究工具,其在多个学科中有重要应用。本文研究了热核估计的相关问题,主要内容分为两部分。第一部分,我们在测度度量空间上考虑一类强局部(strong local)狄氏型,研究相应热方程非负弱上解的比较不等式,进一步研究相应狄氏热核的下界比较不等式,并且在某例子中,我们给出这些不等式的应用。在证明中,我们主要应用一般测度度量空间上的热方程的极大值原理等分析方法。第二部分,