复合实心转子永磁同步电动机的参数计算与性能分析

来源 :山东大学 | 被引量 : 0次 | 上传用户:kissface
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
异步起动永磁同步电动机(Line-StartPermanentMagnetSynchronousMotor,以下简称LSPMSM)是一类转子外表面嵌置鼠笼绕组的永磁同步电动机。定子绕组通电后,该类电机能够凭借感应转矩实现自行起动。稳定运行时,该类电机的工作机制与普通永磁同步电动机基本相同,因而具备较高的工作效率和较高的功率因数。自起动能力的具备与优良的稳定运行性能使得LSPMSM成为多种应用场合中能够替代低效感应电动机,进而实现节能降耗的理想选择对象。
  然而,单就起动性能而言,LSPMSM相较于同规格感应电动机往往表现较差。主要原因为:在起动阶段,感应电动机的平均电磁转矩仅包含感应转矩,而LSPMSM的平均电磁转矩除感应转矩外还包含另外一个转矩分量,即发电制动转矩。发电制动转矩一般在转差率接近于1时达到峰值,与感应转矩叠加后,合成平均电磁转矩在电机转速较低时受到显著削弱,这导致LSPMSM难以获得理想的起动能力。
  采用实心转子替代传统笼型转子是增强LSPMSM起动性能的一项有效措施。实心转子的铁心部分由具备良好导电、导磁性能的实心铁磁体构成,能够同时为转子磁通与转子涡流提供流通路径。由于集肤效应的作用,实心转子LSPMSM在起动初始阶段呈现较大的转子电阻并相应产生较高的感应转矩,因而具备较强的起动能力。但是,将普通笼型转子替换为实心转子以后,电机在转差率较小时的机械特性曲线斜率变小,牵入同步能力随之变差。
  为解决上述问题,有关研究提出了一种在实心转子铁心外表面嵌放鼠笼绕组的组合式转子结构,即复合实心转子结构。装配复合实心转子的LSPMSM既能够继承实心转子LSPMSM原有的良好起动性能,也可以通过鼠笼绕组的合理设计获得较强的牵入同步能力。近年来,已有诸多专家学者将复合实心转子LSPMSM作为研究对象进行讨论分析,但有关该类LSPMSM的一些关键问题仍没有得到深入研究与充分解决,其中有两点较为突出:一是尚未建立完善、准确的电磁参数计算体系,二是对于磁场求解、电磁振动与转子涡流损耗削弱、转子温升抑制等关键问题缺乏深入分析。为此,本文以国家自然科学基金项目“高电压中大功率鼠笼复合实心转子自起动永磁同步电动机系统研究”(51777118)为依托对复合实心转子LSPMSM展开系统研究,研究工作总结如下:
  1.电磁参数计算
  本文以实现起动过程快速计算、起动性能准确判定为着眼点建立起一套完备、准确的电磁参数计算体系。首先通过引入交-直轴耦合互感与交轴永磁体磁链对电机状态方程组加以修正,从而有效计及电机起动过程中的交叉耦合效应。随后,基于电机起动阶段电磁状态变化远快于机械状态变化这一规律,将电机起动阶段瞬变电磁参数的计算转换为一系列不同转差率下稳态电磁参数的计算。结合状态方程组与有限元仿真结果对不同转差率下的稳态电磁参数进行求解。求解完成后,将所得电磁参数代入状态方程组进而搭建起动阶段电机动态模型。不同负载条件下电机起动阶段转速、转矩响应曲线的动态模型计算结果均与有限元仿真结果良好吻合,动态模型计算耗时相较于有限元法则显著减小。
  完成电磁参数计算与动态模型搭建后,本文根据计及交叉耦合效应的状态方程组推导得到电机起动阶段电磁转矩表达式并合理选择起动性能评估指标。根据电磁转矩表达式建立起动性能评估指标与电磁参数之间的函数关系。求解不同电磁参数数值对应的起动性能评估指标从而得到电磁参数数值变化对电机起动能力的具体影响规律。
  2.磁场分布计算
  2.1同步运行磁场计算
  在计算同步运行磁场之前,本文先将电机定子绕组线圈截面、永磁体等关键区域的形状变换为以坐标原点为圆心的径向扇形或者多个圆心同为坐标原点的径向扇形的组合。该变换使得各区域的形状满足了极坐标系下子域法对磁场计算区域的形状要求。采用子域法对区域变形之后的电机同步运行磁场进行计算,将所得计算结果与有限元法计算结果相对比进而验证了区域变形的合理性与磁场计算结果的准确性。
  2.2异步运行磁场计算
  本文提出一种混合磁场计算方法对稳定异步运行状态下的电机磁场分布进行求解。该方法将子域法与有限差分法相结合,利用前者处理定子、气隙区域的磁场分布,利用后者处理转子区域的磁场分布。子域法与有限差分法的相互组合既可以避免单纯使用子域法无法处理转子区域径向边界条件的问题,又具备相较于单纯使用数值计算方法更快的求解速度。
  3.电磁振动分析与削弱
  基于本文给出的同步运行磁场求解方法计算电机永磁体磁动势与定、转子开槽影响系数的分布波形与对应余弦级数表达式。采用磁动势-磁导法并结合永磁体磁动势与定、转子开槽影响系数的计算表达式求解电机气隙磁密,进而应用麦克斯韦张量法获得电机稳定运行状态下径向电磁力密度的解析表达式。通过与有限元仿真结果相比较对所得表达式的计算精度加以验证。根据该表达式得到了电机稳定运行阶段径向电磁力密度谐波分量空间阶次与交变频率的数值特征。
  在完成径向电磁力密度的解析式推导与谐波特征分析后,本文进一步采用不均匀气隙与永磁体分段斜极这两种措施对径向电磁力密度谐波幅值加以削弱。推导对应两种措施的径向电磁力密度表达式。通过与一般情况下(气隙均匀、永磁体不斜极)径向电磁力密度表达式相比较验证了两种电磁振动削弱措施的有效性。
  4.转子涡流损耗削弱与冷却系统改进
  4.1转子涡流损耗分析与削弱
  采用磁动势-磁导法对产生转子涡流的气隙磁密异步谐波进行定性分析。由分析结果可知定子开槽是导致气隙磁场含有异步谐波进而产生转子涡流的主要原因。为此,本文通过增加气隙长度、采用定子磁性槽楔以及采用非均匀气隙这三种措施降低定子开槽引起的气隙磁场异步谐波幅值从而削弱转子涡流损耗。对气隙长度增加幅度、定子磁性槽楔相对磁导率大小以及气隙不均匀程度改变时对应的电磁损耗、功率因数以及起动性能评估指标进行计算,基于计算结果得到了三种转子涡损削弱措施对电机综合性能的影响规律。随后,本文采用嵌合神经网络的改进非支配排序遗传算法对电机进行优化,以此实现电机综合性能的平衡与改善。
  4.2冷却系统改进
  采用一般冷却系统时,大功率复合实心转子LSPMSM定子内部含有径向风道,转子内部不含任何风道,转子内部产热无法有效排出,永磁体发生高温退磁进而影响电机运行性能的概率随之增加。为降低转子温升、保证电机安全高效运行,本文对大功率复合实心转子LSPMSM冷却系统加以改进:在保留定子原有径向风道的基础上,转子铁心内部同时添加轴向、径向通风孔,转子径向通风孔与定子原有径向风道的位置一一对应。添加转子通风孔后,电机运行阶段有大量冷却气流在两侧风扇的驱动下进入转子轴向通风孔,之后流经转子径向通风孔、气隙并最终通过定子径向风道排出,转子铁心内部与冷却气流的接触面积显著增加,转子温升得以有效抑制。采用仿真软件对一台355kW,10kV样机在采用一般/改进冷却系统时的温度场进行计算。由计算结果可知,采用改进冷却系统后,样机额定运行状态下转子鼠笼、转子铁心、转子永磁体的平均最高温度均明显下降,从而验证了改进冷却系统对转子温升的抑制效果。
  5.样机试验
  设计制造一台355kW样机与一台5.5kW样机。测取355kW样机的空载电动势、负载运行性能指标(包括定子绕组电流、功率因数、效率)以及堵转转矩与堵转电流,测取5.5kW样机的起动阶段转速曲线、空载电动势以及堵转转矩。利用两台样机的试验数据对本文理论分析与计算结果进行验证。
其他文献
研究背景  氧化石墨烯(graphene oxide,GO)是一类石墨烯来源的碳纳米材料,具有二维片层结构,比表面积较大。近些年,GO在电子、机械、光学以及食品衣物等制造业中的应用越来越广泛,尤其在生物医药领域。如此广泛的应用使得人体接触氧化石墨烯的机会大大增加,接触途径也多种多样,包括职业场所的经肺吸入、水体和土壤中通过生物富集作用经口进食以及生物医药领域的口服和静脉注射等。由此,GO的广泛应用
改革开放以来,随着我国医疗改革不断深入,特别是1989年国务院发布《关于扩大医疗卫生服务有关问题的意见》,进一步明确了医疗市场化改革的方向,医疗服务市场化效率大大提升,而公立医院公益性减弱,导致社会资源配置不公平,公立医院医患关系日益紧张、医疗纠纷案件层出不穷、各种“医闹”和暴力伤医事件频繁上演的社会问题,引发了社会各界对医患关系的密切关注和深刻反思。2009年实行新医改以后,医患关系虽然有所缓解
学位
黄花苜蓿(Medicago falcata L.)因具有耐旱、抗寒等特点,是北方人工草地主要的建植物种,也是我国饲料类经济作物。磷是构成生命体的基本元素,是植物生长中所必需的元素。由于蒙古高原区的土壤磷素有效性弱,黄花苜蓿的产量通常较低。因此,探讨不同磷肥和磷水平下黄花苜蓿生长与土壤磷素间的关系至关重要。针对这一问题,本研究从磷肥、土壤与黄花苜蓿三个角度出发,研究以下科学问题:(1)不同磷肥和磷水
学位
杂交在植物界普遍存在,是物种分化和生物多样化的主要驱动力之一。目前,杂交物种形成研究多集中于长寿命的树木、灌木、以及模式作物及其近缘种,而对于高山区域多年生草本植物的研究相对较少。青藏高原及其邻近地区作为世界上最重要的生物多样性热点地区之一,该地区植物类群的杂交物种形成历史解析,对于揭示全球生物多样性的起源和演化具有重要意义。本研究以分布在中国青藏高原及其邻近地区的多年生珍稀濒危羌活属药用草本植物
学位
压电陶瓷是一类能够利用正逆压电效应实现机械信号和电信号相互转化的重要功能材料。目前,以Pb(Zr,Ti)O3陶瓷(简称PZT陶瓷>为代表的Pb基压电材料被广泛用于制造驱动器、传感器、谐振器、滤波器等电子元器件。但是,Pb基压电材料在生产和应用过程中会导致有毒Pb元素的挥发,对人类健康和生态环境造成了严重的危害,因而世界各国陆续出台相关的法律来禁止或限制电子设备中含Pb材料的使用。因此,研究可以取代
学位
有机太阳能电池因其具有柔性、轻质、半透明和可溶液加工生产等优势受到了广泛的关注。近年来,非富勒烯有机太阳能电池研究取得了令人瞩目的进展,其光电转换效率已经突破了 18%;这一进步显著地推动了其商业化的进程。然而,要想实现有机光伏器件的实际应用,一个关键的挑战是在光活性层足够稳定的情况下获得高的器件效率。目前,非富勒烯有机太阳能电池的光伏效率还低于钙钛矿太阳能电池且器件长期的稳定性也远未达到实际应用
学位
电力系统的规模不断扩大,用户负荷持续增长。为了保证配网的稳定运行和改善系统的电能质量,并联无功补偿电容器被大量接入配网,用于补偿无功、改善功率因数以及提供电压支撑。然而,并联电容器投入经常会产生过电压和涌流,给电网负荷和设备的运行带来不利影响。因此,实时监测电容器的投入状态,有利于明确暂态扰动来源,并采取针对性的扰动抑制措施。此外,电容器的投切状态与配网的母线电压和无功分布息息相关,监测配网每个电
高压直流输电技术是实现跨区域、大容量电力输送的有效措施,有助于缓解我国能源分布不均衡的问题,协调地区经济发展。因此,我国建设有众多的高压直流输电工程,交流系统与直流系统混联运行的现象愈发常见。  对于连接到逆变站的受端交流电网,交流系统与直流系统之间相互影响。一方面,交流故障会引起逆变站运行状态变化甚至换相失败,不利于混联系统的稳定运行。另一方面,受控制系统作用及换相失败的影响,逆变站的输出特性呈
学位
为了实现“碳中和”及“碳达峰”的宏伟目标,我国正进行着能源领域的转型,传统的火力同步机组正在被以风电,光伏为主的新能源所替代。随着电力电子设备渗透率的显著提高,我国电网正逐步呈现出“高比例可再生能源”和“高比例电力电子设备”的“双高”态势。在这一大背景下,决定了新能源并网特性的电力电子相关控制策略已经成为了发电系统中的关键一环。近年来,由新能源接入弱电网所引发的一系列宽频振荡问题严重威胁到了电网安
近年来,随着长距离、大容量输电要求的提出,直流输电展现蓬勃发展的趋势。超/特高压直流输电线路的电压等级高、输电环境复杂,外绝缘污秽问题成为决定其线路绝缘水平的重要因素之一,污秽条件下的电气绝缘问题愈发突出。±660kV银东直流输电线路自投运以来便发生了多起由绝缘子放电导致的降压运行。线路的降压运行不仅会造成线路输送负荷浪费,造成经济损失,而且异常放电的频繁发生也表明该区域存在污闪放电的风险,严重威
学位