【摘 要】
:
金属微纳阵列在入射光满足波矢匹配条件下,能够在其表面激励表面波甚至表面等离激元,形成共振性的表面电磁波场和表面电子密度波。通过将入射光能耦合进金属微纳结构表面,基于表面电磁波场对表面电子的耦合约束和再分布限域作用,可显著改变金属微纳阵列的光反射率和透过率,实现基于频率选择的光透过增强与光反射抑制。研究显示,所激励的表面等离激元其频谱与强度,与微纳结构其尺寸、形貌、材质和介电行为等密切相关;通过合理
【基金项目】
:
国家基础加强计划重点研究项目,基于光学天线的高灵敏度探测器件技术
论文部分内容阅读
金属微纳阵列在入射光满足波矢匹配条件下,能够在其表面激励表面波甚至表面等离激元,形成共振性的表面电磁波场和表面电子密度波。通过将入射光能耦合进金属微纳结构表面,基于表面电磁波场对表面电子的耦合约束和再分布限域作用,可显著改变金属微纳阵列的光反射率和透过率,实现基于频率选择的光透过增强与光反射抑制。研究显示,所激励的表面等离激元其频谱与强度,与微纳结构其尺寸、形貌、材质和介电行为等密切相关;通过合理配置金属微纳阵列的结构形态和参数,可移动反射光或透射光的峰值波长;在金属微纳阵列上加载信号电压,可基于偏振光波的特征介电响应产生不同的反射或透射作用。本文对金属微纳阵列在表面波或表面等离激元激励下的红外减反射和透射增强特性,进行了较为深入的研究,主要内容如下:首先结合金属自由电子气模型,分析了沿金属-介质界面传播的表面等离激元色散关系;讨论了表面等离激元激励方式,及其对微纳结构间的表面等离激元耦合共振特性的影响;基于金属纳米条阵开展了光偏振态调节机理研究,设计了周期性金属微纳结构阵列。然后基于有限元法,设计了多种亚波长纳模。通过调变金属膜厚度、单元周期、尖端锐度和尖角高度等参数,仿真分析了红外反射率、透过率以及局域场增强行为,以及对激励表面等离激元的影响;讨论了通过改变入射光波的线偏振态,以及在金属微纳阵列上施加不同信号电压,对谱红外透射、反射以及表面电荷分布密度的影响。基于结构仿真参数,采用微纳加工工艺制作了原理样片,进行AFM和SEM等表面形貌测试,获得了微纳结构参数体系,进一步优化了工艺流程。利用傅里叶显微红外光谱测试,对金属微纳阵列开展了近红外透射和反射特性测试分析,在2.6μm和4.5μm处实现了减反增透。通过在金属微纳阵列上加载信号电压,获得了正交偏振光波的透过率测试数据,观察到信号电压作用下的透过率变动行为,可实现透射光偏振态的电调控;通过增大所加载的信号电压幅度,基于不同线偏光的变透过率特征可有效调控透射光偏振态。
其他文献
随着化石能源的大量消耗,人类文明的发展受到能源危机与环境污染等问题的严峻挑战。为应对挑战,以风能和太阳能为代表的可再生能源得到大规模开发利用。目前,开发利用可再生能源的主要途径是并网发电。这其中,并网逆变器是关键设备。为了在复杂电网环境下安全稳定运行,无源性概念被引入到并网逆变器的相关研究中。本质上,基于无源性设计的目的是在全频段内消除并网逆变器输出阻抗出现负阻成分的风险。本文旨在探索一套兼具通用
随着智能汽车时代的到来,车辆定位对于自动驾驶路线规划、车辆碰撞预警等具有重要意义,基于超宽带(UWB)通信的定位技术由于其厘米级的空间定位能力而受到越来越多的关注。在超宽带通信系统中,用于提供精确本振信号的频率合成器是最为复杂和关键的模块之一,同时车辆复杂恶劣的环境对频率合成器的噪声性能、可靠性等都提出了更为严格的要求。本文着眼于车辆定位中的UWB射频通信应用,设计并实现了一款基于低噪声环形压控振
渗透压差驱动的正渗透(FO)过程凭借其低能耗、高效率和低污染倾向等优势,近些年来受到大量的关注与深入的研究,并且在污水处理,海水淡化及食品加工等领域有广泛应用。然而高性能FO膜的缺乏在很大程度上限制了FO技术的进一步发展。由间苯二胺(MPD)和均苯三甲酰氯(TMC)在聚合物基底上通过界面聚合制备的薄膜复合膜(TFC)凭借其良好的化学稳定性和分离性能等优势受到研究者的青睐,成为目前主流的FO膜。然而
在复杂对抗环境中,目标和干扰成像过程是从混叠的点目标状态逐渐分离到呈现出外观特征。对红外目标的有效识别是实现精确打击的重要因素。从混叠状态尽早识别出目标和干扰的数目位置可为红外目标的识别提供更早期的信息,提高军事打击能力。本文研究了红外目标的抗人工干扰识别算法,主要工作如下:针对对抗初期,目标和干扰在像面混叠,无法分辨数目和位置信息的问题,本文提出了基于多帧粗精结合的空间邻近目标超分辨算法。该算法
免疫检查点阻断(Immune checkpoint blockade,ICB)疗法是通过解除免疫检查点对T淋巴细胞的免疫抑制,从而使宿主免疫系统重新识别和消灭肿瘤细胞。然而,ICB疗法的抗肿瘤作用在很大程度上取决于细胞毒性T淋巴细胞的浸润,这意味着T淋巴细胞浸润程度有限的“冷肿瘤”无法从这种治疗方法中受益。因此,迫切需要提高“冷”肿瘤对ICB疗法的响应率,进而提高ICB疗法的抗肿瘤效果。据报道,化
光电探测器能够将光信号与电信号紧密联系,因此被广泛应用于光通信、生物成像、机器视觉等领域。其中,窄带光电探测器能够实现对光波长(频率)的鉴别,主要被应用于图像识别、生物标记等方向;而偏振敏感光电探测器则能够实现对光偏振态(振动方向)的检测,可被应用于遥感、光学雷达等领域。二者从光的不同维度进行探测,而偏振敏感窄带光电探测器可以同时实现窄带与偏振双维信息的探测。目前,窄带光电探测器和偏振敏感光电探测
深度学习因其卓越的表现受到研究者的广泛关注。然而,深度神经网络通常需要大量的带标签样本来训练大量模型参数。但是,采集大量带标签样本代价昂贵,很多实际应用提供的训练样本集所包含的监督信息往往不够充裕,大多属于本文定义的三种弱数据集:1)仅包含大量无标签样本,不包含带标签样本;2)仅包含极少量带标签样本;3)包含极少量带标签样本以及大量无标签样本。但是,直接使用监督信息不充裕的弱数据集很难训练得到可靠
现有全自动包装机工作过程中普遍存在粉尘溢出问题,这些粉尘对工人健康、环境污染、生产安全、设备寿命都有严重的危害,立式包装是有效解决全自动包装过程中粉尘溢出的有效包装方法,但其在落料工序和横封工序中的细小粉尘容易扩散到空气中造成粉尘溢出。本文通过理论分析和计算机仿真研究立式包装机的落料工序和横封工序中粉尘溢出问题,主要内容和成果如下:根据物料颗粒在立式包装机中的运动特性,分析其粉尘溢出的机理及其影响
泵控锻造液压机具有传动系统结构简单、响应速度快、灵敏度高、运行过程平稳等优点,广泛应用于自由锻造生产领域。本文结合22MN泵控锻造液压机技术改造工作,对其系统及相关技术展开研究,深入分析其组成和工作原理,研究其液压系统动态特性,设计控制系统体系结构,并对相关软件进行了开发。论文对22MN泵控锻造液压机液压系统工作原理进行研究,对正弦泵(双向变量径向柱塞泵)工作原理、液压机液压系统回路的作用和压机整
高速飞行器因其在军用和民用领域具有重要的应用价值,逐渐成为了各航天大国的研究热点,是未来航天航空领域的重要发展对象。本文以高速飞行器为研究对象,重点针对多约束下高精度的快速轨迹优化和多约束下强抗扰的跟踪制导问题开展了研究,所做出的成果主要包括:研究了基于改进hp-Radau伪谱法的飞行器轨迹优化方法。首先利用hp-Radau伪谱法将飞行器轨迹优化最优控制问题转化为非线性规划问题来求解。然后,在约束