半群作用的Devaney混沌

来源 :重庆师范大学 | 被引量 : 0次 | 上传用户:zixialang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
混沌是非线性动力系统所特有的复杂状态。现在已经有很多的方法去研究混沌性状,其中应用拓扑学的思想方法能够避免复杂的计算,是研究混沌理论的有力工具。本文采用这种方法研究了混沌特有的拓扑结构和性质,更重要的是将群的作用引入到拓扑空间中,寻找通往混沌的新道路。在第一章中,我们简要地介绍了拓扑动力系统的发展现状及本文的写作背景和研究的主要内容。在第二章中,我们主要研究了Li-Yorke混沌集和非游荡点集的关系,补充了Li-Yorke定理。我们得到了拓扑传递系统的一些性质,并证明了如下定理:若拓扑传递系统(X,f)有一个周期点,则f有全由非游荡点组成的Li-Yorke混沌集S。在第三章中,我们通过把半群作用引入到拓扑空间中,定义了半群作用的Devaney混沌:设半群S连续作用在紧致度量空间X上,如果满足:(1)拓扑可迁;(2)对初值有敏感依赖性则称该半群作用是Devaney混沌的。另外还给出了半群作用的拓扑可迁的几个等价条件以及半群作用的Devaney混沌和半群作用的拓扑强混合性的关系。在第四章中,首先总结了本文的结论,然后分析了研究中存在的问题及以后的研究方向。
其他文献
凸性是一个十分重要的数学概念,六十年代中期诞生的一门新的数学分支—凸分析,就是以凸集和凸函数为基本研究对象的,现已成为数学规划、变分学、最优化理论等学科的重要理论基础和有力工具。但是,凸函数的局限也十分明显,因为实际问题中的大量函数都是非凸函数。为进一步满足解决实际问题的需要,人们对凸性概念作了多种形式的推广。因此,研究凸性的推广形式及其在最优化理论中的应用是一件十分重要而有意义的事情。第一章综述
凸性和广义凸性在数理经济、工程、管理科学以及在最优化理论中起着非常重要的作用。因此,对凸函数的研究是数学规划中最重要的内容之一。本文主要对两类广义凸函数做了进一步研究。首先,本文提出了一类新的广义凸函数,即半严格-E-预不变凸函数,这类函数是半-E-凸函数和E-预不变凸函数的推广,因此半严格-E-预不变凸函数概念的提出是有一定理论意义的。本文从以下几个方面研究了这类广义凸函数:(1)我们举例说明了
不动点理论是泛函分析理论的一个重要组成部分。关于不动点问题的研究,从二十世纪二十年代起,由经典的Banach压缩映射原理到现在用Ishikawa迭代序列或Mann迭代序列去逼近各类渐近非扩张映象的不动点已经形成了一个比较系统、完善的体系。本文主要是研究最近提出的两类比较广泛的渐近非扩张映象的不动点定理,所得结果推广和发展了现有的相应结果。本文主要内容如下:第一章,介绍了不动点理论的意义和研究现状。
预测包容检验是组合预测的一个重要研究领域。近十几年来,因组合预测可以最大程度使用样本信息而成为预测领域的研究热点。而如何选择参与组合的单项预测模型的研究并不多。当前组合预测单项模型的选择方法是基于预测精度基础上的。理论上讲,有m种预测模型,就要进行2m次选择,这一工作量将是巨大的,给模型选择带来极大不便。因此,很有必要对组合预测的模型选择方法进行研究,建立一套有效的选择方法,降低组合模型的建模复杂
自从Banach在1922年证明了Banach不动点定理之后,利用迭代的方法逼近非线性映象不动点与非线性算子方程解的研究便越来越广泛。在很长一段时间内,人们在不同的空间用不同的迭代序列(Mann、Ishikawa迭代序列,修改的Mann、Ishikawa迭代序列等)逼近渐近伪压缩映象的不动点,其成果已经比较成熟。但他们讨论的结果都要求映象T是实Banach空间E的非空凸子集上的自映象。本文首次引入
由F0 = 0, F1 = 1, Fn + 2 = Fn +1+ Fn ( n≥0)和L0 = 2, L1= 1,Ln + 2 = Ln +1 + Ln ( n≥0)所定义的递归数列分别称为Fibonacci数列和Lucas数列。Fibonacci数列产生于12世纪意大利数学家Fibonacci叙述的“生小兔问题”,从一个简单的递推关系出发,竟引出了一个充满奇趣的数列,它与植物生长等自然现象,以及
不定方程不仅自身发展异常活跃,而且全面应用于离散数学的其他各个领域。它对人们学习研究和解决实际问题有着重要作用。因此,国内外有不少学者对不定方程进行了广泛深入的研究。关于不定方程x~3±27 =Dy~2( D >0)已有不少研究工作,特别是当D无平方因子且无6 k +1形状的素数因子时,已有很多很好的结果。但当D不含平方因子,且被6 k +1型素因数整除时,方程的求解比较困难。当3| x,0 <
凸性是一个十分重要的数学概念,六十年代中期诞生的一门新的数学分支一凸分析,就是以凸集和凸函数为基本研究对象的,现已成为数学规划、变分学、最优化理论等学科的重要理论基础和有用工具。但是,凸函数的局限性也十分明显,因为实际问题中的大量函数都是非凸函数。为进一步满足解决实际问题的需要,人们对凸性概念作了多种形式的推广。因此,研究凸性的各种推广形式及其在最优化理论中的应用是一件十分重要而有意义的事情。第一
带有约束的非线性规划问题广泛见于工程、军事、国防、经济等许多领域。求解它的主要方法之一是把它转化为无约束规划问题,然后利用求解无约束规划问题的最优化方法去求解。罚函数方法是将约束规划问题无约束化的重要方法之一,该方法通过求解一个或一系列罚问题而得到原约束规划问题的解。在上世纪六十年代后期,首先由Eremin和Zangwill给出了精确罚函数的概念,从那时起对精确罚函数方法的研究一直吸引着很多学者。
本文简要论述了求解定态薛定谔方程解析解与数值近似解的方法,研究了多项正幂与逆幂势函数叠加条件下径向薛定谔方程的解析解。根据量子系统波函数必须满足单值、连续和有限的标准条件,首先求出径向坐标r→∞以及r→0时的解析解,然后采用奇点邻域附近的级数解法与求得的渐近解相结合,确定指标s以及幂函数各项系数间的约束关系,通过幂级数系数比较法得到势函数叠加势为V(r)=α1r~8+α2r~3+α3r~2+β3r