【摘 要】
:
智能合约作为以太坊区块链的可编程模块继承了区块链的技术特征——数据的存储和计算方式拥有不可更改的特性。它适用于存在互不信任的应用场景。现有的区块链应用研究一般分为两点:(1)针对区块链去中心化和防篡改的特性将其应用在新的应用场景中。(2)针对区块链技术的限制,扩展区块链的功能。本文主要基于以太坊智能合约技术,做出了以下两点研究。(1)针对在互联网环境下社区代币有中心化、不公开、平台掌控者可以任意修
论文部分内容阅读
智能合约作为以太坊区块链的可编程模块继承了区块链的技术特征——数据的存储和计算方式拥有不可更改的特性。它适用于存在互不信任的应用场景。现有的区块链应用研究一般分为两点:(1)针对区块链去中心化和防篡改的特性将其应用在新的应用场景中。(2)针对区块链技术的限制,扩展区块链的功能。本文主要基于以太坊智能合约技术,做出了以下两点研究。(1)针对在互联网环境下社区代币有中心化、不公开、平台掌控者可以任意修改的问题。本文基于以太坊智能合约技术提出了一种激励社区人员做出贡献的方法,解决了上述问题,并且针对该方法进行了设计和实现。方法主要分为代币分配、投票、代币交易、以代币为押金基础和以投票为标准的社区仲裁。它使社区贡献和加密货币相互转化,在社区中持有的代币和做出的贡献呈正相关,能够很好表达社区中贡献情况。社区中的投票结果体现社区的意愿,押金模式为代币提供了供应需求。最后,对智能合约中方法的GAS使用花费做出了记录。(2)针对无法获取社区贡献激励系统中智能合约的数据问题,本文设计了一个智能合约查询系统来解决这个问题。以太坊区块链的通用数据以智能合约为单位在以太坊中存储,经过编码后再通过虚拟机中执行进行状态转换。读取通用类型数据和状态转换数据存在较大的困难。本文设计了一个智能合约查询系统能够增加社区激励系统智能合约的公开性和为数据研究提供有效的结构化数据。首先,为了获取社区贡献激励系统区块链中的数据,本文分析那些数据需要进行了获取,并对需要获取的数据进行了抽取、解析和存储。其次提供分析合约数据高效的查询接口,能够查询合约的变量、函数和日志。最后对查询接口进行了性能评估,结果表明本工作具有有效性。
其他文献
现今,与无人机相关的技术发展十分迅速,尤其是利用无人机搭载高清摄像头获取影像数据,已被广泛应用,但是单幅无人机图像无法展示一个完整区域的具体内容。为了获取分辨率更高、视场角更大的无人机影像,本文对无人机影像拼接技术进行了研究,并利用GPU框架对拼接过程进行加速。另外,在雾天环境下进行无人机航拍会极大地影响图像的成像质量,而且会出现图像特征信息模糊的问题,这可能导致之后无法正常地进行特征点提取。本文
无线传感器网络(Wireless Sensor Networks,WSNs)得益于现代信息、计算、无线通信等技术的迅速发展,因其传感器节点微型、低功耗等优势,已成为当代人们日常生活重要的部分。然而,由于微型廉价的传感器节点在存储、通信和计算等方面资源有限,且在恶劣的环境下容易被破坏,从而导致网络通信受阻。因此,有效地延长网络的生命周期,提高节点的能量效率显得十分重要,而合理的传感器节点部署方法不仅
瞬变电磁法是一种建立在电磁感应原理基础上的有源测量方法,根据测得的瞬变电磁信号分析地电体之间的电阻率差异,进而达到探测地下地质体的目的。然而,瞬变电磁信号容易受到各种噪声的影响,尤其是在信号的晚期测道处,噪声可能会淹没有效的瞬变电磁信号,导致信号的利用受限,影响对深部目标的探测。瞬变电磁信号降噪是指利用各种方法,尽可能地压制噪声,提取有效的瞬变电磁信号,以便后续的处理。目前的瞬变电磁信号降噪方法大
移动通讯和互联网技术的不断进步,以及云计算、大数据等一系列新兴技术的蓬勃发展致使网络空间加速变革,拓扑结构愈发复杂导致网络流量持续爆炸式增长,而且,屡见不鲜的网络攻击事件使得网络安全问题首当其冲。网络安全态势感知技术能够弥补传统安全防护技术的缺陷,通过获取引发网络态势发生变化的态势要素,对其进行安全评估分析,从而及时发现网络攻击威胁与异常,并对网络变化趋势进行预测。它旨在从宏观角度出发,系统、整体
人机对话是自然语言处理领域最具挑战性的任务之一,也是未来实现人机共融社会的基础。近年来,得益于深度学习技术的发展和大数据时代积累的海量数据,基于神经网络的对话生成方法受到了学术界和工业界越来越多的关注。目前基于深度学习的生成式对话模型大多以最大似然估计为训练目标,这种方法容易产生内容单一且不含有意义信息的通用回复。情绪的感知和表达在人与人的交流中起着重要的作用,然而现有的研究主要集中在话语的语义理
随着互联网技术的发展,越来越多的人乐意在网络平台中发表评论。随着时间的推移,网络平台产生并保存了大量的评论性文本信息。这些评论信息往往蕴藏着用户对某事件或某产品的倾向性观点及情感,对其进行情感分析,有助于网络舆情监控;也有助于商家改进产品质量,提高服务水平。在文本情感分析方法中,粗粒度的句子级情感分析只能得到文本的整体情感,无法得到所评论对象不同方面或属性的情感信息。而细粒度的方面级情感分析可获取
随着移动电信技术和智能终端的飞速发展,大量计算密集型、时延敏感型的新型应用不断涌现,如智能交通、虚拟现实、车联网、物联网等,为满足移动终端的低时延响应需求,一种整合网络边缘中异构资源的分布式计算范式被提出,即多接入边缘计算(Multi-access Edge Computing,MEC),又称移动边缘计算。但由于MEC的计算资源有限,且用户终端的任务类型复杂多样,不同任务类型的处理难度差距较大。因
阿尔茨海默症(Alzheimer’s Disease,AD)是一种神经退行性脑部疾病,临床上表现为记忆障碍、行动以及语言能力丧失等。AD根据临床症状表现可分为轻度认知障碍(Mild Cognitive Impairment,MCI)、正常情况(Normal Control,NC)和AD。MCI是AD和NC的一种中间状态,是AD的前驱阶段,且MCI的临床症状不明显,在病情的初期不易被察觉,一般情况下
图像描述是一项融合计算机视觉与自然语言处理的技术,能够实现从图像信息到文字信息的转换。图像描述在人机交互、视觉辅助和智能机器人等诸多场景中具有重要的应用价值。目前大多数是针对英文语句的图像描述研究,中文语句与英文语句在语法、分词、表达等方面有所不同,中文描述语句的准确度和细致度等仍有待提高。本文采用深度学习方法对图像中文描述模型进行研究,主要工作如下:第一,提出了基于多尺度密集连接网络的图像中文描
图节点分类在社交网络、电子商务和疾病预测等领域有着广泛的应用。图结构的复杂性给现有分类算法的应用带来了挑战,因此探索高效的分类算法具有重要的现实意义。本文主要基于图卷积神经网络和超图神经网络对节点的半监督分类方法进行研究。在图卷积神经网络的节点分类方法中,初始的图结构往往存在噪声,直接将其送入网络模型中训练,模型的分类准确率会受到影响。因此本文首先在已有的图神经网络架构上改进,设计一种融合图结构和