面向二维虚拟试衣的着装人体解析方法研究

来源 :昆明理工大学 | 被引量 : 0次 | 上传用户:clubshe
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
虚拟试衣能有效增强用户的网络购物体验,准确理解着装人体图像中以人为中心的语义区域,对辅助虚拟试衣起着重要作用。但由于着装人体图像服饰繁多,姿态各异,具有丰富的纹理和复杂的背景,使得准确理解图像变得困难。本文针对着装场景中人体姿态、边缘轮廓、服装配饰的复杂性以及人体部位关节点的遮挡等因素,导致人体解析结果不够精确的问题,结合边缘轮廓、姿态特征和粗解析特征,通过定义的结构损失和人体解析损失的组合函数进行人体精确解析。实验结果表明,该方法能有效地提高着装人体解析的精度。因着装场景下服饰种类不一,具有丰富的纹理和复杂的背景元素,对边缘轮廓识别产生干扰,所以边缘特征难以学习。针对该问题,本文以Res Net-101为基础,构建了边缘提取网络,融合具有全局信息的底层特征和具有局部信息的高维度特征,提高人体轮廓的准确率,减少各个语义边缘难以准确定位造成的边缘混乱、细节丢失等问题。然后,由于着装场景下人体姿态各异,人体部位存在重叠及交叉,使得相似关节点易混淆,导致识别准确率不高的问题。本文构建了着装姿态模板,通过聚类算法对关节点聚类,得到姿态模板,最终将着装姿态划分为4种,并在姿态估计网络中,通过定义的着装姿态损失函数,强化网络模型对人体关节点的定位能力,进一步提升姿态估计的准确率。最后,因着装人体图像中服饰语义繁多,服饰语义往往覆盖了重要的人体部位,单一特征难以包含边缘信息和人体部位信息,所以无法准确识别人体部位或各个语义边界。针对该问题,本文将边缘轮廓提供的边缘信息,姿态特征提供的关节点信息,及基础网络提取的粗解析特征,送入精确解析模块中,进行精确解析,并定义结构损失函数以获得更加精确的解析结果。
其他文献
随着人工智能技术的发展以及司法数据的公开,司法领域的人工智能研究与应用受到了广泛关注。罪名预测作为法律判决预测中一个重要子任务,它是司法智能辅助系统的重要组成部分。罪名预测任务根据案情描述和事实预测被告人被判的罪名。罪名预测通常被看作司法领域的文本分类问题,已有方法大多采用深度神经网络构建罪名预测模型,在常见罪名的预测方面取得了很好的效果。然而,已有研究对罪名预测任务中的数据不平衡现象关注较少,导
日冕喷流是太阳大气中普遍存在的太阳活动现象,对它的研究有助于揭示太阳大气中的能量传输和释放的机制。它往往发生在相对比较小的区域,和磁浮现和磁对消密切相关。如果能很好的把太阳大气中的喷流识别出来,特别是小的、弱的喷流,就可以清楚知道日冕喷流到底对太阳风加速和日冕加热起多大作用。在以往的研究中,喷流爆发的同时,会有耀斑或者日冕物质抛射的发生,所以对于日冕喷流的检测也有利于其他太阳活动现象的研究。随着科
随着互联网的飞速发展,P2P系统以其快速、可靠的性能越来越成为共享经济时代不可忽略的重要组成部分。而针对P2P信誉系统的女巫攻击通过注册大量节点与目标节点交互,利用不公平评价操控目标节点的信誉变化,对系统造成严重破坏。因此,如何有效抵御女巫攻击成为保障P2P系统稳定运转的重要问题。然而,现有关于女巫攻击防范的研究多侧重于对女巫攻击者操控的节点(女巫节点)进行探测,利用深度学习或者贝叶斯网络等技术将
我国矿产资源丰富,各式的矿物品种种类多、储量大。开采矿产资源不可避免的会破坏矿区的生态环境,导致滑坡等地质灾害。为预防灾害的发生,需要对矿区进行长期连续的监测。合成孔径雷达干涉测量(InSAR)技术被越来越多的应用到矿区的形变监测中。露天矿是一种特殊的土地利用单元,在矿区中往往形变梯度大、采区裸地多、人工地物少、矿区周边植被茂密,常规的时序InSAR技术能够获取矿区监测点的密度较低。引入分布式目标
近年来,红外与可见光图像融合在各种基于视觉的应用中具有重要意义,因此受到越来越多的关注。然而,现有的融合方法中,一般都要求输入的多张源图像和输出的融合图像的空间分辨率一致,这在很大程度上阻碍了这些方法在实际场景中的应用。并且,当源图像分辨率都较低时,得到的融合图像分辨率也会比较低,即所包含的信息不够充分。针对这些问题,本文提出了一种基于元学习的任意分辨率的红外和可见光图像融合网络,有效提高不同分辨
平行句对抽取是缓解低资源机器翻译中数据稀缺问题的关键任务,同时也是提升机器翻译性能的重要手段。但是目前平行句对抽取的方法都是基于句子语义相似性度量,并没有考虑不同词语在句子中语义表征的难易程度,同时主要集中在句子级别,忽略了文档级上下文信息以及图像所包含的信息,提取到的句子语义信息不充分,抽取到的平行句对质量不高,导致了汉-越神经机器翻译(Neural Machine Translation,NM
服装作为电子商务涉及最早的品类,已经成为规模最大、发展成熟的行业。网上服装销售具有很多传统模式不具备的优势,可使用户充分享受网络购物的乐趣和互动体验。服装迁移技术作为虚拟试衣系统的核心技术,越来越受到人们的关注。然而,如何帮助用户快速准确地找到个性化的服装以及人工智能辅助服装设计逐渐成为难点。为了辅助设计师设计时尚服装,而且可为用户提供个性化的数字服装定制,本文提出了面向服装创意设计的风格迁移方法
老挝语是老挝人民民主共和国的文字,作为“一带一路”重要盟国的老挝,其研究意义重大,由于老挝语使用人口少,且数字化落后,故从网络直接获取老挝语文本语料较为困难,但存在大量老挝语文本图像,因此,如何从现有文本图像中准确识别老挝语字符序列用以扩充老挝语文本语料,成为目前老挝语自然语言处理研究重点之一。光学字符识别可有效提取文本图像所含字符,但目前老挝语文字识别研究寥寥无几,故本文参考相关文字识别研究,提
案例推理是一种发展较为成熟、利用过往知识解决具有高度相似特征问题,并学习解决方案的方法。在检索案例时,对于庞大的案例库,传统KNN检索算法在处理线性问题时,需要对所有案例进行匹配。因此,存在时间成本高、效率低的问题。为此,现在大多研究都是对整个案例库聚类,形成具有不同特征的类簇。谱聚类算法作为一种基于图论的聚类算法,不同于一般的聚类算法,它不仅对样本集的空间分布特征没有要求,同时聚类的结果还是全局
材料基因组倡导发挥材料大数据的作用,采用机器学习变革材料研发文化。铝硅合金(Al-Si)具有强度高、耐磨性好且热膨胀系数小等性能特点,广泛应用于汽车、航天和电子工业中。Al-Si合金性能主要由合金微观组织中初晶Si相的形状及大小决定。目前,由于试验费用太高,时间成本巨大,微观组织图像的获取较为复杂,但它存在于公开发表的文献中。因此,本文采用深度学习方法从Al-Si合金文献中提取插图及标题,并筛选出