【摘 要】
:
井间电磁探测是在单井基础上发展起来的一种低频远探测方式,发射端采用磁偶极子源以一定的频率发射电磁波信号,并在相距一百甚至几百米的接收端,对信号进行接收和采集。井间电磁成像是根据接收端获取信号波形的幅度和相位等信息,通过反演迭代得到井间地层电阻率的分布。本文利用积分方程数值模拟的方法对地层电阻率分布进行建模分析,得到井间电磁场响应。然后对各个接收点电磁信号分析研究,分析电阻率变化以及电阻率对比度对电
论文部分内容阅读
井间电磁探测是在单井基础上发展起来的一种低频远探测方式,发射端采用磁偶极子源以一定的频率发射电磁波信号,并在相距一百甚至几百米的接收端,对信号进行接收和采集。井间电磁成像是根据接收端获取信号波形的幅度和相位等信息,通过反演迭代得到井间地层电阻率的分布。本文利用积分方程数值模拟的方法对地层电阻率分布进行建模分析,得到井间电磁场响应。然后对各个接收点电磁信号分析研究,分析电阻率变化以及电阻率对比度对电磁响应的影响,来探究影响成像质量的关键因素,为后续地层信息的反演成像提供有效的理论指导。本文推导了均匀地层的磁场格林函数的计算过程,以及磁偶极子作为发射和接收的地层响应表达式,为井间电磁响应数值模拟以及反演成像奠定了理论基础。采用波恩迭代法对地层进行反演成像求解地层电阻率的分布。计算地层电阻率时,首先根据理论公式计算给定地层模型的电磁响应,然后作为反演的输入数据,在反演过程中根据给定初始地层电阻率值计算得到磁场响应的理论计算值,与输入的实测数据进行比对不断修改地层电阻率的值,直到理论计算值与输入实测数据之间的误差达到给定精度时停止迭代,最终得到地层反演成像结果。本文通过对异常块地层模型,分层地层模型以及不规则地层模型三种地层模型的成像研究验证正反演算法。首先是对于异常块地层模型进行成像,从反演成像结果中能够确定异常块分布的大致位置即异常块所在的地层深度以及距离发射井和接收井的位置,同时也可以获得异常块目标以及背景地层的电阻率值;其次又验证了分层地层模型的成像效果,可以确定出分层地层模型的分层层数,层边界以及层厚度;最后为了验证算法是否适用更复杂的地层成像,对三种不规则地层模型“凹”模型、“凸模型”以及“十”字模型分别进行反演成像,成像结果中同样可以确定出地层形状,分布位置,电阻率的值等信息。通过对各种常见地层模型进行正演数值模拟以及反演成像,从理论上验证了反演算法对地层模型成像的可行性。最后通过对实测数据的反演成像验证算法的成像效果,根据成像结果可以判断出实际地层低阻区和高阻区的分布情况。这在油藏矿产资源的实际探测应用中有很大的现实意义,并且对井间电磁成像技术的进一步研究具有重要的参考价值。
其他文献
作为众多自然语言处理任务的基础,词语的语义表征和学习成为了近年来的研究热点。最初的大量研究成果都是针对英语,德语等符号形语言,而中文作为象形文字具有其独特的特点。于是一些中文研究者利用中文词语中字,偏旁部首,部件构造等细粒度特征对中文语义表征算法进行了优化,使得词语的语义表征在中文自然语言处理任务中效果更好。然而,这些现有中文语义表征的算法仅仅关注于词语内部原始的特征,没有深度挖掘出词语-词语之间
随着移动终端的发展,智能手机以它强大的功能吸引了非常庞大的用户,其中Android系统因为其开源、自由的特性深受开发人员的喜爱,占据了很大的市场份额,但这也为安卓恶意软件敞开了大门,所以研究一个有效的恶意软件检测方法非常有必要。目前通过流量分析来检测恶意代码的研究并不多,常见的Android恶意软件识别与分类方法多是基于静态程序分析,通过分析Android软件的API调用、权限等特征来识别和分类。
近年来,微电子和低功耗的技术发展助力了物联网系统的进步,计算密集型应用出现爆炸式增长,如无人驾驶、增强现实等,这要求网络基础设施能够提供更低的时延和更强的计算能力。多项研究表明,边缘计算是必不可少且极具前景的解决方案。边缘计算提出崭新的云-边-端架构,在离终端设备更近的地方部署服务器,从而显著减少了用户时延、网络带宽压力和云计算中心存储计算压力。在边缘计算系统架构中,有许多工作研究了静态边缘机制,
径流时间序列是一种具有代表性的时间序列,对其进行相关分析研究已有很多先例,并取得了不错的结果。然而径流时间序列受到多种复杂因素综合影响,使用传统方法不足以分析其中含有的丰富信息,而且也不能进行高效精准的预测,但是径流又对生产生活具有重大影响。所以,对于提升径流预测精度,需要引入新的预测方法、改善预测流程、提高模型预测能力迫在眉睫。本文在对某流域的河段站点上,选取有代表性的位于该流域上下游的A、B两
在新冠疫情防控期间,人脸识别在病毒流调、无接触通行、目标追踪等方面发挥出重要作用,但此类复杂的自然场景伴有诸多干扰因素,阻碍了识别性能的进一步提升。本文将研究在自然场景下如何改善跨姿态人脸识别任务的表现。该问题面临如下挑战:(1)相比于光照、表情等因素,姿态变化更容易引起自遮挡和外观扭曲等问题,使得原本处于人脸中心区域的显著特征有所缺失,进而发生一种现象:相比于类间差异(即不同对象之间的特征差异)
当前,智能医疗领域由于其旺盛的需求及庞大的发展潜力,成为了人工智能技术重点研发和应用的方向。本文拟针对三维膝关节核磁共振图像中前叉韧带疾病的诊断进行研究,算法框架包括一个前叉韧带病灶区域检测模块,以及一个前叉韧带撕裂程度病理分级模块。在病灶检测模块中,本文建立了以三维卷积核为基础的卷积神经网络,对三维图像中的空间特征和结构特征进行了充分提取;考虑到医疗图像中病灶点尺寸较为固定,因此在训练网络之前先
在云计算不断发展中,软件服务化趋势越加明显,用户通过网络即可使用应用提供的服务,服务慢慢变成应用构建基础,成为云产品的基本形态。FaaS(Function as a Service)以函数为单元提供服务,符合云发展的趋势,并且作为一种新型计算方式成为了云计算未来发展的一个方向。FaaS的出现使用户专心于编写和上传核心的业务代码,由FaaS负责创建和维护相应的计算、存储、网络等资源。用户完成编写并上
根据某篇目标论文寻找相似论文,是科研人员的常见需求,学术论文推荐系统能够帮助科研人员从快速增加的海量学术大数据中过滤提取有效信息。推荐算法是推荐系统的主要研究对象之一,不同的推荐算法适用于不同的数据。学术论文包含多属性特征,既可以使用基于文本特征的推荐算法,也可以根据引文、共引等信息构建同构网络、根据文章、作者、机构等信息构建异构网络,对网络使用基于图特征的推荐算法。现有的论文推荐方法存在许多问题
近年来,随着经济、科技、医疗等的快速发展,在世界范围内,人口数量持续上升。每逢节假日,在旅游景点、购物商场、交通枢纽等公共场所均会出现大量人群聚集的情况,一旦发生异常情况,极容易发生踩踏事故,导致人员伤亡。如果能使用架设在公共场所的监控设备进行实时的人数检测和预警,便能够有效地避免事故的发生。这使得使用监控摄像头进行人群计数成为计算机视觉领域的一个研究热点。此外,人群计数还有更多广泛的应用,例如公
无人机作为一种利用无线电方式控制指挥的无人设备,其控制准确性极大依赖于通信信号的强弱,在复杂场景下容易出现指挥控制困难、设备不兼容、数据传输容易被干扰等情况。因此,需要寻找一种更高效、兼容性更好、更安全的人机交互方法。随着深度学习的发展,出现越来越多的算法来解决在人机交互领域的动作识别问题。但多数方法采用图像+光流的形式进行联合训练,计算成本巨大,且容易受到浅层视觉特征的影响。本文基于姿态检测算法