基于多属性特征的论文推荐系统设计与实现

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:lm20090910
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
根据某篇目标论文寻找相似论文,是科研人员的常见需求,学术论文推荐系统能够帮助科研人员从快速增加的海量学术大数据中过滤提取有效信息。推荐算法是推荐系统的主要研究对象之一,不同的推荐算法适用于不同的数据。学术论文包含多属性特征,既可以使用基于文本特征的推荐算法,也可以根据引文、共引等信息构建同构网络、根据文章、作者、机构等信息构建异构网络,对网络使用基于图特征的推荐算法。现有的论文推荐方法存在许多问题。经典的基于同构网络的论文推荐方法损失了多种顶点类和边类构成的复杂论文网络的结构信息,而大多数基于图的推荐算法都忽略了论文文本信息。且无论同构或异构的图嵌入方法,在新增节点后均需要重新训练。还有一些加入了文本的特征的基于图嵌入的论文推荐方法,它们融合的文本或结构特征较简单,没有考虑摘要信息的文本相似度和论文作者及所属机构带来的结构关系。针对以上问题,本文提出了在同构网络的基础上融入异构网络表征学习、文本表征学习方法的论文多属性特征推荐算法:该推荐算法首先利用引文网络,基于引文的结构将论文转化为向量。再利用含有文章、作者、机构信息的异构网络,将论文基于作者和机构的论文信息转化为向量。然后通过摘要和标题的文本信息得到文本特征向量。接着对于每篇论文,使用基于引文结构特征、异构网络特征和文本特征的相似论文重构引文网络,最后根据加入多属性特征的重构引文网络进行保留结构性和同质性特征的图嵌入,得到每篇论文的多属性嵌入向量,最终推荐列表由向量相似度计算得到。在ar Xiv子数据集上的实验结果表明,本算法在精确率、准确率、召回率、F1四个指标上部分优于对比算法。结合上述推荐算法,本文设计实现了论文推荐原型系统,包含基本的查询、搜索功能,支持用户自定义的基于多属性特征的论文推荐方法,对新增论文,避免图表征学习重训练,直接进行推荐。本系统使用Python进行后端开发,Qt和flask框架进行前端开发,My SQL作为数据库实现系统。
其他文献
作为区块链2.0时代的重要标志,智能合约具有数据透明、不可篡改、永久运行等特点,这就使得其在解决“信用”问题方面具有天然的优势,近几年来智能合约的数量和规模也在不断扩大,并且功能也日益复杂。但因智能合约的编写和传统软件的编写存在一定的相似性,所以智能合约也不可避免地存在漏洞。智能合约很容易遭到黑客攻击,因为它们很难修补,并且缺乏确保其质量的评估标准,黑客可以在以太坊上发布智能合约中的漏洞,几年前的
视频图像数据维度高、流量大、传输带宽受限,尤其在5G时代下,对高效高性能的编码提出了挑战。如何提升高清视频编码过程中图像的传输质量并确保高效压缩效率,如何尽可能地通过率-失真优化技术平衡码率与失真从而抉择更好的预测模式获得更好的编码性能,都是视频编码研究的关键问题。在问题驱动下,本文分析并建立了时域冗余模型,分别给出了图像级、块级的率-失真优化策略。具体工作分为三个方面。(1)针对编码中占比最大的
随着比特币而出现的区块链技术对传统的中心化服务理念产生了极大的冲击,导致客户更愿意青睐并非一家独大的运营模式。但是数据的去中心化和服务的可维护性却是反比的关系,位于此种关系两种极端情况下的公有区块链和私有区块链由于各自的缺点,导致其很难适应现如今的商业运行模式。联盟链的诞生结合以上两种区块链运行模式的优点,进一步克制各自的缺点,成为时下各大商业化区块链的首选。目前联盟链的日常运行完全依赖于管理员节
作为众多自然语言处理任务的基础,词语的语义表征和学习成为了近年来的研究热点。最初的大量研究成果都是针对英语,德语等符号形语言,而中文作为象形文字具有其独特的特点。于是一些中文研究者利用中文词语中字,偏旁部首,部件构造等细粒度特征对中文语义表征算法进行了优化,使得词语的语义表征在中文自然语言处理任务中效果更好。然而,这些现有中文语义表征的算法仅仅关注于词语内部原始的特征,没有深度挖掘出词语-词语之间
随着移动终端的发展,智能手机以它强大的功能吸引了非常庞大的用户,其中Android系统因为其开源、自由的特性深受开发人员的喜爱,占据了很大的市场份额,但这也为安卓恶意软件敞开了大门,所以研究一个有效的恶意软件检测方法非常有必要。目前通过流量分析来检测恶意代码的研究并不多,常见的Android恶意软件识别与分类方法多是基于静态程序分析,通过分析Android软件的API调用、权限等特征来识别和分类。
近年来,微电子和低功耗的技术发展助力了物联网系统的进步,计算密集型应用出现爆炸式增长,如无人驾驶、增强现实等,这要求网络基础设施能够提供更低的时延和更强的计算能力。多项研究表明,边缘计算是必不可少且极具前景的解决方案。边缘计算提出崭新的云-边-端架构,在离终端设备更近的地方部署服务器,从而显著减少了用户时延、网络带宽压力和云计算中心存储计算压力。在边缘计算系统架构中,有许多工作研究了静态边缘机制,
径流时间序列是一种具有代表性的时间序列,对其进行相关分析研究已有很多先例,并取得了不错的结果。然而径流时间序列受到多种复杂因素综合影响,使用传统方法不足以分析其中含有的丰富信息,而且也不能进行高效精准的预测,但是径流又对生产生活具有重大影响。所以,对于提升径流预测精度,需要引入新的预测方法、改善预测流程、提高模型预测能力迫在眉睫。本文在对某流域的河段站点上,选取有代表性的位于该流域上下游的A、B两
在新冠疫情防控期间,人脸识别在病毒流调、无接触通行、目标追踪等方面发挥出重要作用,但此类复杂的自然场景伴有诸多干扰因素,阻碍了识别性能的进一步提升。本文将研究在自然场景下如何改善跨姿态人脸识别任务的表现。该问题面临如下挑战:(1)相比于光照、表情等因素,姿态变化更容易引起自遮挡和外观扭曲等问题,使得原本处于人脸中心区域的显著特征有所缺失,进而发生一种现象:相比于类间差异(即不同对象之间的特征差异)
当前,智能医疗领域由于其旺盛的需求及庞大的发展潜力,成为了人工智能技术重点研发和应用的方向。本文拟针对三维膝关节核磁共振图像中前叉韧带疾病的诊断进行研究,算法框架包括一个前叉韧带病灶区域检测模块,以及一个前叉韧带撕裂程度病理分级模块。在病灶检测模块中,本文建立了以三维卷积核为基础的卷积神经网络,对三维图像中的空间特征和结构特征进行了充分提取;考虑到医疗图像中病灶点尺寸较为固定,因此在训练网络之前先
在云计算不断发展中,软件服务化趋势越加明显,用户通过网络即可使用应用提供的服务,服务慢慢变成应用构建基础,成为云产品的基本形态。FaaS(Function as a Service)以函数为单元提供服务,符合云发展的趋势,并且作为一种新型计算方式成为了云计算未来发展的一个方向。FaaS的出现使用户专心于编写和上传核心的业务代码,由FaaS负责创建和维护相应的计算、存储、网络等资源。用户完成编写并上