热聚合卵白蛋白自组装纤维的形成及其稳定乳液的特性研究

来源 :华中农业大学 | 被引量 : 0次 | 上传用户:anandebaobei
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
卵白蛋白作为鸡蛋的主要成分蛋白,具备良好的功能特性,如起泡性、乳化性等,在食品工业中具有较高的应用价值。热处理作为食品工业的常用手段,可以引起食品组分理化性质及形态结构的改变,从而影响着食品的性质与功能。卵白蛋白在热处理过程中表现出解折叠、水解、重组等行为,最终不仅呈现出新的化合形态,而且还形成了新的内部结构。已有报道显示食品组分在热处理后会形成微/纳米形态产物,但对于卵白蛋白在加热过程中“如何通过热聚合形成微/纳米结构及其特性”等问题鲜有研究报道。因此,研究热聚合卵白蛋白自组装聚集体的分子特性及开发蛋白纤维稳定的乳液具有一定的理论价值和应用前景。已有研究表明,蛋白质能在加热过程中发生热聚合自组装聚合成微/纳米物质,并获得新的结构特性,用于制备稳定的纳米级Pickering乳液。本研究以卵白蛋白为主要原料,通过热处理来制备蛋白自组装纤维,再利用高压微射流技术制备纳米级Pickering乳液,探究卵白蛋白自组装纤维的乳化性质。本研究从纤维的分子特性、结构特性、界面性质及乳液稳定性进行了系统研究,探索了热处理时间对卵白蛋白自组装纤维的影响,并探究加热过程中分子特性的变化规律和蛋白纤维的形成机理,揭示热聚合卵白蛋白自组装纤维的微观结构与聚集体宏观形态间的关系,为利用热聚合蛋白纤维稳定乳液应用提供理论依据与实践参考。主要研究内容及结果如下:1.以卵白蛋白为原料,探究热处理对蛋白质自组装纤维进程的调控作用。结合荧光标记及动态光散射研究热聚合卵白蛋白自组装纤维的宏观尺寸与微观分子形态的关系,研究表明:加热12 h的蛋白纤维变化最大,硫磺素T荧光强度和表面疏水性分别增加至120.42 a.u.和3958.8 a.u.(p<0.05)。加热后的蛋白样品中存在粒径大于10000 nm的聚集体,加热12 h的蛋白纤维PDI值为0.62,zeta电位绝对值为43.6 m V,显示出最高的稳定性。此外,SDS-PAGE和透射电镜的结果表明蛋白纤维是由蛋白质水解的小肽形成,适当延长加热时间会提高纤维形成的效率。2.利用圆二色谱、红外及紫外光谱全面解析自组装纤维的结构信息,探索加热时间对卵白蛋白自组装纤维构象及官能团所在微环境的影响。结果表明加热12 h的蛋白纤维二级结构组成为:α-螺旋16.4%,β-转角3.2%,β-折叠74.6%,无规卷曲5.8%,相比于未加热蛋白,β-折叠含量增加了15.8%;此外,内源荧光达到最大强度所对应的波长λmax从333.1 nm(0 h)红移至336.9 nm(24 h),结合表面疏水性可推测部分蛋白内部色氨酸残基暴露于极性环境中;紫外二阶导的峰谷比“r”值从1.73(0 h)减小至1.41(24 h),说明蛋白内部结构发生了展开与变化。与未加热的蛋白相比,热处理不仅导致了蛋白内部氨基酸残基和疏水基团的暴露,还增加了蛋白纤维样品中微环境的极性。在自组装过程中,蛋白水解成多肽,多肽形成结构紧密的蛋白纤维。3.采用高压微射流技术制备纳米级Pickering乳液,探究自组装蛋白纤维的界面特性和乳化活性,探索自组装蛋白纤维对乳液稳定性的影响规律。结果表明:加热12 h的蛋白纤维可以显著改善水-油界面张力(由22.82 m N/M降低至18.10m N/M),zeta电位绝对值由6.24 m V(0 h)增加至21.04 m V(0 h)(p<0.05);其Pickering乳液的气-液界面张力由56.25 m N/M(0 h)降低至51.2 m N/M(12h)。乳液蛋白吸附量和界面蛋白浓度均有改善,分别从78.96%和3.94 mg/m~2增加至98%和4.89 mg/m~2。蛋白纤维稳定乳液的平均粒径为475nm,小于未加热的卵白蛋白所稳定乳液的平均粒径(550nm)。蛋白纤维界面性质的改变促进了乳液3D网络结构的形成,改善了乳液液滴间相互作用,有助于体系抵抗储藏过程中液滴聚集。4.探索了卵白蛋白自组装纤维稳定乳液在储藏期间微观结构的变化及乳液中油脂的抗氧化稳定性。结果表明:热处理12 h的蛋白纤维乳液最为稳定,其Zeta电位由43.6 m V降到23.9 m V,乳液粒径从475 nm增加到912 nm,具有较为均匀的油滴分布,且界面蛋白吸附量和界面蛋白含量分别从98%和4.89mg/m~2下降到64%和2.78 mg/m~2,絮凝指数和聚合指数分别从3.05和3.55增加至9.04和23.90,脂肪上浮率为7.22,表明乳液具有较好的储藏稳定性。此外,乳液的POV值和TBARS值表明蛋白纤维具有较好的抗氧化能力,可以抑制乳液在储藏期间氧化产物的生成。
其他文献
种子萌发是植物生命周期至关重要的起始阶段,关系着植株后续生长,也决定着作物最终产量,因此一直都是植物学领域的研究热点,人们不断地从各种角度探究其调控机理。硫化氢(Hydrogen sulfide,H2S)作为具有广谱效应的信号分子,也被报道在种子萌发阶段发挥作用。但目前多数研究重点关注的是H2S如何缓解非生物胁迫对种子萌发的抑制,而对于正常生长条件下H2S,特别是内源H2S对种子萌发的调控机制尚不
在生物体中,细胞并非静止不动的,生物体的发育等过程中伴随着大量细胞迁移事件的进行。多数迁移细胞具有高度极化的形态,细胞的极化受到多种信号分子的精准调控,例如磷脂酰肌醇(Ptd Ins)和小GTP酶RhoA。磷脂酰肌醇磷酸酶SHIP2催化Ptd Ins(3,4,5)P3水解成Ptd Ins(3,4)P2,并且可以与RhoA相互作用而来降低细胞后部细胞膜内Ptd Ins(3,4,5)P含量,影响Ptd
生物炭是用于修复重金属污染土壤的一种优良钝化材料。生物炭施入土壤后,各种环境因素导致的重金属形态变化是判断生物炭修复重金属污染土壤效果的重要因素。稻田土壤常见的水分管理措施如淹水、排干和干湿交替可通过影响土壤理化性质和生物炭性质,从而导致重金属形态改变。但目前水分对土壤重金属有效性和生物炭性质影响的结论却不大相同,特别是在重金属复合污染土壤中。本研究采用室内恒温培养试验,模拟我国早熟水稻生长周期的
农业长期以来都是长江流域的主营产业,在经济发展中发挥重要作用,也为守护国家粮仓安全作出巨大贡献。耕地是粮食生产的命脉和根基,长江经济带以全国33%的耕地面积承载50%的农业人口,农业生产资源得天独厚,但随着城镇化进程加快,高速经济增长不可避免带来耕地生态系统破坏,且人们长期以来对耕地经济利益的过度追求,使得潜在的生态价值被弱化,致使耕地过度非粮化甚至非农化。长江经济带“牵一发而动全身”的战略定位决
随着我国国民经济的增长,社会城市化、工业化水平显著提高,特别是沿海地区成为国家经济的重要支撑。为了缓解众多的人口和有限的土地资源之间的矛盾,拓宽城市可利用空间、实现城市价值的最大化,越来越多的地下工程项目新建在填海淤泥地层这一特殊地质条件下。但由于填海淤泥地区具有“三高三低”的工程特性,复杂多变的地质条件修建隧道工程势必会改变原有地质环境,造成地表水、地下水的重新分布。同时在修建过程会产生强烈的冲
作物的株高是动态衡量其健康和整体生长状况的关键指标,该性状被广泛应用于作物的生物学产量和最终的籽粒产量估测。传统的人工测高方式低效、主观性强,难以实现大面积株高数据的同步观测。随着遥感技术在农业领域的高速发展,使高精度、高频次、高效率的作物株高采集成为可能。其中,无人机结合高分辨率数码相机因其低成本、高灵活性等优势,已成为应用最广泛的作物高度信息采集方式。通过低空无人机遥感方法提取高精度作物株高需
MicroRNA(miRNA)是一种广泛存在的长度在20到24个核苷酸之间的内源性非编码小RNA,是真核生物基因表达的负调控因子。目前miRNA调控次生生长相关的机理研究已取得一定进展,在拟南芥(Arabidopsis thaliana L.)等物种中已发现多个与植物次生生长相关的miRNA基因,但这些miRNA在维管系统中的具体调控途径尚不清晰,尤其是其在木本植物中的作用机制研究还处于起步阶段。
水体是众多环境污染物的最终归宿地,其污染对水生生物的生存和繁衍造成严重威胁,影响水生态系统健康。斑马鱼的行为测试模型在化学品筛选和毒性评估中开始逐渐被采用,且表现出很好的应用前景。然而,由于测试程序设计和测试方法不一致,斑马鱼行为分析模型在化学品毒性测试方面的应用受到限制。本研究试图优化斑马鱼行为分析模型的测试条件并开发多种行为参数,建立一种基于斑马鱼仔鱼行为的化学污染物毒性快速评估的方法。为验证
磷是动植物生长发育过程中必不可少的元素物质。土壤环境中,高达95%的磷为较难利用的磷化合物,磷对于生物的有效性取决于其存在形态、含量及其相互转化。土壤磷的转化过程包括无机难溶性磷酸盐的化学转化和有机磷的矿化。驱动有机磷矿化的磷酸酶受控于相关微生物区系的组成和多样性,而微生物的组成结构受到土壤养分含量和比例的反馈和调节。虽然施肥对土壤磷素转化和微生物结构组成的影响已有大量研究,但肥料添加对不同养分含