磁性拓扑材料Cd3As2与NaYbO2的磁性及电输运性质研究

来源 :中国科学技术大学 | 被引量 : 0次 | 上传用户:langya925
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
最近二十年间,拓扑理论在凝聚态物理方面发挥着越来越重要的作用,拓扑型激发在各种不同的凝聚态系统中都有体现,这些新奇的拓扑量子态极大地丰富了凝聚态物理学。陆续发现和报道了反常量子霍尔效应、拓扑绝缘体、外尔半金属等奇异的物理现象和新材料。此外,还有一种新型的拓扑态,其中包含的准粒子在交换操作下表现出非阿贝尔的统计性质,被认为有希望在未来实现量子计算。总而言之,这些与拓扑序和拓扑态相关的新材料和新现象将可能对下一代电子器件和量子计算机的发展发挥重要的价值。按照研究材料体系的不同,本文分为以下两大部分。三维拓扑狄拉克半金属Cd3As2在费米能级处存在一对受对称性保护的狄拉克锥,这种特殊的能带结构使其有希望应用于无能耗的新型电子器件,因而得到了广泛的关注。有研究表明,磁性拓扑半金属中的拓扑态与电子之间的关联作用可能导致新的拓扑相。另外,磁性外尔半金属中实现的反常霍尔效应,使其在实现无场的无能耗输运方面具有潜在的应用价值。因此,我们的第一部分工作是将磁性Mn元素引入三维拓扑狄拉克半金属Cd3As2中,并研究其磁性和输运性质。通过控制原材料Mn3As2和Cd3As2的比例,我们制备得到了多晶(Cd1-xMnx)3As2(x=0-0.20)化合物。磁性测量结果表明,Mn元素的掺杂使抗磁性的Cd3As2转变为反铁磁性的(Cd,Mn)3As2,这或许为我们提供了一种通过操纵反铁磁序来控制拓扑保护的狄拉克材料的方法。此外,磁电阻测量观察到了强烈的量子Shubnikov-de Hass(SdH)振荡。通过分析纵向电阻率在磁场中的振荡,我们发现,Mn元素含量的变化极大地影响了费米能级的位置,Mn元素含量越高,费米能级越接近狄拉克点。通过对霍尔电阻的研究,我们认为SdH振荡来源于表面态。同时,朗道范图显示,我们制备的多晶化合物具有非平庸的贝利相位。实验结果表明,反铁磁性(Cd1-xMm)3As2体系保持着原本的拓扑性质,没有发生向平庸绝缘体态的拓扑转变。这对今后磁拓扑狄拉克半金属的研究和应用具有一定的参考价值。拓扑半金属或者拓扑绝缘体中的拓扑态,被称为“受对称性保护的拓扑相”,其拓扑序来自近邻粒子之间的局域对称性。而量子自旋液体基态,被一些研究人员认为是“真正的”拓扑相,因为它具有与量子纠缠的长程模式相关的拓扑序。我们基于量子自旋液体开展本文的第二部分研究内容。量子自旋液体指的是一种具有自旋高度纠缠,即使在零温下也不会出现有序的物态。这种物态没有确定的序参量,无法使用朗道对称性破缺理论来概括,是一种新奇的量子物态,具有很高的理论研究价值。此外,新型的高温超导电性和量子计算也与其具有密不可分的关系。因此,量子自旋液体吸引了大量研究人员的兴趣。NaYbO2被认为是一种可能实现量子自旋液体基态的材料。本文结合高场磁化率测量和非弹性中子散射等手段,对不同成分的Na1xYbO2(x=0,0.03和0.07)进行了研究。对于x=0样品,在0.3 K以下没有观察到任何磁有序的特征。非弹性中子散射实验表明,在动量转移Q约为1.25 A-1的位置存在一个连续的低能激发谱,并延伸至转移能量E~2.0 meV处。与之相比,x=0.03和0.07的样品则分别在1.1和2.3 K时出现反铁磁转变。高场磁化测量结果表明x=0和0.03样品具有非常类似的磁性质,如均在1/3饱和磁化强度处出现平台状特征。这意味着x=0样品中的自旋无序态可能在“上上下”相出现之前被外磁场抑制。基于以上的实验结果,我们构建了完整的与外磁场和成分相关的相图。我们的实验结果表明,NaYbO2是一种非常有希望实现量子自旋液体态的材料,其无序的量子自旋液体基态非常接近易受外磁场和Na+离子空位浓度调控的不稳定反铁磁态。最后,我们对磁化强度的数据进行了详细的分析,得到了可能的量子自旋液体基态的临界转变磁场,进一步完善了 NaYbO2的温度—外磁场相图。此外,我们选取具有较大分子磁矩的Er和Ho元素,制备了与NaYbO2具有相同结构的NaErO2与NaHoO2,研究了其磁性及其磁热性质。结果显示,NaErO2与NaHoO2样品显示了优良的磁制冷性能,在0~5 T的外磁场下,其磁熵变分别在在3和6 K时取得最大值18.2和18.5 J/kg·K。NaHoO2在低场时同样具有较好的制冷性能,在0~1T和0~2T的磁场条件下,磁熵变在3K时分别达到9.0 和 12.8 J/kg.K。
其他文献
精子发生(Spermatogenesis)是由多种因素共同调控的复杂而又精密的过程,它起始于精原干细胞的自我更新和分化,历经精母细胞减数分裂、精细胞形态特化形成成熟的精子。其中任何一步异常,都可能导致精子减少甚至无法形成。精子发生的正常进行有赖于酶和结构蛋白的精确表达,这些酶和结构蛋白的时空特异性表达不仅依赖于基因的适时转录和翻译成蛋白质,同时受蛋白质泛素化降解调控。Cullin-RING fin
流固耦合现象广泛存在于自然界和工程领域中,关于流固耦合问题的研究具有重要的学术意义和工程背景。本文采用浸入边界-格子玻尔兹曼和非线性有限单元法相结合的方法,研究了单个或多个柔性体自主推进的三个典型的流固耦合问题。本文的主要工作及结论简述如下:研究了二维柔性板在平直壁面附近的自主推进问题。结果表明,适当的板与周围流体的密度比(M)可以提高板的推进特性。对于相对较小的M,当板靠近壁面时,侧向力增强,输
近年来,我国在经济高速发展的支撑下,特大型城市规模日趋扩大,高层建筑越来越多,建筑结构越来越复杂。虽然高层建筑占地面积小、土地利用率高,但是建筑内的火灾隐患多、危害性大,一旦起火,火灾的快速扑救和人员的安全疏散也是一个巨大的挑战。高层建筑内有很多竖向通道,火灾发生后容易成为热烟气的主要蔓延通道,造成火灾危害区域扩大。在以往的研究中,由于实验条件所限,研究者多采用比例模型实验来探究发生火灾时高层建筑
运动是动物适应环境,能够趋利避害,成功地在自然中生存的基本能力。作为动物界中最为广泛的运动形式之一,节律运动是动物执行多样的运动模式的基石。诸如昆虫飞行时翅膀的振动,哺乳动物的呼吸、心跳等都是节律运动的体现。深入理解动物以何种方式产生协调的节律运动,是探索神经控制基本原理的主要路径,可以帮助我们增加对神经系统的认识。动物的节律运动涉及神经至肌肉的驱动力发生,感觉信息反馈以及高层神经环路对运动系统的
参量下转换纠缠光源在线性光学系统中有着不可替代的作用,其可以被用来级联实现大规模的光量子线路。提高纠缠源品质一直是一个亟待解决的问题。之前的参量下转换光源收集效率低的主要原因是由于光子对的频率关联无法解除,所以需要使用窄带滤波片来解除频率所致。本文主要是通过优化参量下转换晶体的参数,找到一个无频率关联在收集效率和亮度都达到最优的参数,为了能够将其应用到实际通信中,我们将参量光波长控制在光纤损耗最小
在标准模型Higgs粒子确认发现之后,当前的高能物理界的发展目标主要集中在新物理的寻找。而新物理的寻找主要有两种途径,1.标准模型的精确检验,即从理论和实验上给出更加精确的结果,以期望找到当前的理论与实验之间的细微偏差;2.给出当前各种新物理模型的存活参数空间,在限制条件允许的情况下给出新物理可能出现的现象学,为实验寻找新物理特征信号提供理论依据与指导。本论文课题就是围绕这两条途径,分别进行了三规
获得1997年诺贝尔奖的激光冷却技术打开了研究冷原子物理的大门。近二十年来冷原子物理与技术快速发展,2001年,2005年,2012年的诺贝尔奖即是冷原子相关技术的发展应用。冷原子可以实现量子存储用于量子通信和量子计算;超冷原子则可以用于量子模拟去研究凝聚态体系的演化现象。磁场会引起原子的能级劈裂,它和激光以及射频,是调控冷原子的重要手段。磁场通过在线圈中通电流产生,实现各种磁场波形需要模拟可控的
实践是加深学生对知识的理解,提高学生能力的唯一途径。但是很多教师认为实践只能运用于带有实验的学科,其实这样的观念是错误的。在其他科目的教学中开展实践同样能发挥作用,使学生更好地成长与发展。根据科学研究表明,在习作单元的教学中开展言语实践,可以加强学生的口语表达能力,可以让学生积累一定的语言、情感、形式,让学生的语文实践能力得到有效的提高,所以教师要将其重视起来。
期刊
带状流是具有一维时空结构的流体速度场。漂移波是非均匀媒质中由压强梯度自由能驱动的高模数的波。人们普遍接受二者是所谓的漂移波-带状流系统的两个基本成分。特别的,托卡马克中的带状流是指由带状的静电势涨落的径向变化产生的EXB速度;轴对称托卡马克中的漂移波是与某个有理面相关的在径向的定域的驻波,在极向的传播是行波。尽管带状流在介观尺度,漂移波中存在两种不同的尺度:微观尺度的线性本征模和介观尺度的漂移波波