异源表达细菌素BMP32r杀菌和抑制生物膜作用机制研究

来源 :西北农林科技大学 | 被引量 : 0次 | 上传用户:zx385213
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
食源性致病菌及其生物膜是诱发食源性疾病的主要原因,严重威胁食品工业的发展和人类健康。致病菌存在的抗生素耐药性增加了人类感染的风险,给医疗行业带来了巨大的负担。细菌素是一类细菌核糖体合成的具有抗菌作用的多肽,被认为是天然的食品防腐剂和潜在的抗生素替代品。此外,由于对化学防腐剂安全性的担忧,消费者更倾向于选择天然防腐剂用以防控食源性致病菌污染。因此,迫切需要开发高效、安全的细菌素作为食品防腐剂和抗菌剂应用于食品和医药领域。基于实验室前期挖掘到的细菌素BMP32基因,本研究通过异源表达获得具有广谱抑菌活性的重组细菌素BMP32r,对其进行纯化和鉴定,研究其理化性质、抑菌活性、杀菌机制、抑制生物膜机制及对混合生物膜的抑制作用,并将其应用于食品和医药领域,以期为其应用奠定理论基础。具体研究内容和结果如下:(1)细菌素BMP32异源表达系统的构建及选择:基于面包乳杆菌MN047基因组扩增出细菌素BMP32基因,构建了p ET-30a(+)-BMP32重组质粒,将其转入大肠杆菌BL21;根据毕赤酵母密码子偏好性,合成细菌素BMP32编码基因序列,构建了p PIC9K-BMP32重组质粒,并将其转入毕赤酵母GS115。分别诱导表达后结果显示,两套表达系统均能实现目标细菌素的异源表达,原核表达系统制备细菌素样品对大肠杆菌指示菌的抑菌效价为320 AU/m L,而其在真核表达系统中的抑菌效价为20 AU/m L。结合原核表达系统表达周期短、目标样品活性高等优势,选择大肠杆菌表达系统作为细菌素BMP32的制备方式。(2)细菌素BMP32r的纯化、鉴定和理化性质:通过大肠杆菌表达系统制备携带有HIS标签的重组细菌素BMP32r,并对其进行纯化和鉴定;采用二倍稀释法测定其的最小抑菌浓度,并对BMP32r的稳定性和溶血活性进行测定。结果表明,建立的Ni-NTA亲和层析柱和高效液相色谱结合的两步纯化方案能有效的纯化细菌素BMP32r,LC-MS/MS鉴定到细菌素BMP32r的表达,纯化后的细菌素BMP32r对大肠杆菌ATCC25922和金黄色葡萄球菌ATCC 25923的最小抑菌浓度分别为9.2 mg/L和18.4 mg/L,具有较好的抑菌活性。该细菌素具有良好的热稳定性、p H稳定性、贮藏稳定性和化学试剂稳定性。此外,细菌素BMP32r在0-147.2 mg/L浓度条件下具有低的溶血活性。(3)细菌素BMP32r的抑菌活性及抑菌机制:采用琼脂扩散法测定细菌素BMP32r的抑菌谱;通过生长曲线和杀菌曲线测定其抑菌和杀菌作用;利用扫描电镜和透射电镜观测细菌素BMP32r处理对指示菌(大肠杆菌和金黄色葡萄球菌)微观结构的影响,通过碘化丙啶吸收和乳酸脱氢酶释放试验测定细菌素BMP32r对指示菌细胞膜的损伤。结果表明,细菌素BMP32r具有广谱抑菌活性,能抑制多种革兰氏阳性菌和革兰氏阴性菌,其中包括一些多重耐药菌;能有效抑制大肠杆菌和金黄色葡萄球菌的生长,具有杀菌作用;细菌素BMP32r造成大肠杆菌细胞表面碎片,结构断裂,内部质壁分离,胞内物质分布不均匀,甚至造成细胞裂解;能引发金黄色葡萄球菌表面凹陷,内部质壁分离,胞内物质分布不均匀的现象。此外,细菌素BMP32r处理增加指示菌碘化丙啶摄取和胞外乳酸脱氢酶的含量。这些结果说明,细菌素BMP32r通过破坏细胞膜完整性,诱导胞内物质流失,甚至裂解细胞的方式诱导细菌死亡。(4)细菌素BMP32r抑制单增李斯特菌生物膜的作用机制:采用二倍稀释法测定细菌素BMP32r对单增李斯特菌的最小抑菌浓度;通过生长曲线和杀菌曲线测定其亚抑菌浓度、对浮游菌的抑制和杀死作用;利用结晶紫染色、CCK-8、平板计数法、半固体平板、钌红染色、实时定量PCR和扫描电镜探究亚抑菌浓度细菌素BMP32r对单增李斯特菌生物膜的抑制作用;通过结晶紫染色、CCK-8和平板计数法评价细菌素BMP32r对成熟单增李斯特菌生物膜的破坏作用;采用平板计数法测定细菌素BMP32r对单增李斯特菌顽固菌的杀死作用。结果表明,细菌素BMP32r对单增李斯特菌的最小抑菌浓度为4.6 mg/L。在4×MIC浓度条件下处理3 h能完全杀死单增李斯特浮游菌。亚抑菌浓度(1/16×MIC和1/32×MIC)的BMP32r几乎不影响单增李斯特菌的生长,但可以降低单增李斯特菌生物膜的形成量,减少生物膜内菌的数目,抑制细菌的泳动,减少胞外多糖的分泌,下调群体感应和毒力基因的表达。浓度为2×MIC和4×MIC的细菌素BMP32r能减少成熟生物膜的形成量,杀死生物膜内菌,破坏生物膜结构。4×MIC的细菌素BMP32r能在4 h内完全杀死单增李斯特顽固菌。这些结果说明,细菌素BMP32r能通过杀死浮游菌、减少生物膜形成、破坏成熟生物膜和杀死顽固菌等多个方面抑制单增李斯特菌生物膜。(5)细菌素BMP32r对混合生物膜的抑制作用:通过结晶紫染色和CCK-8测定混合生物膜的形成规律;采用结晶紫染色、平板计数法和银染法探索细菌素BMP32r对混合生物膜的抑制作用;采用平板计数法测定细菌素BMP32r对成熟混合生物膜的破坏作用。结果表明,大肠杆菌的添加降低混合生物膜的形成量及生物膜内菌的代谢活力,而金黄色葡萄球菌的添加有助于混合生物膜的形成并增加生物膜内菌的代谢活力。细菌素BMP32r处理能显著降低混合生物膜的生成量和粘附菌数目,光学显微图像显示,细菌素BMP32r能降低混合生物膜内菌的聚集和胞外物质生成。此外,细菌素BMP32r能有效破坏成熟的混合生物膜,但单增李斯特菌和金黄色葡萄球菌形成的混合生物膜对BMP32r的耐受性较高。这些结果说明,细菌素BMP32r能有效的抑制混合生物膜的形成、破坏成熟的混合生物膜,但对于单增李斯特菌和金黄色葡萄球菌形成的混合生物膜抑制效率降低。(6)细菌素BMP32r在食品及医药方面的应用:采用平板计数法分别测定细菌素BMP32r对牛奶中单增李斯特菌的杀死作用及对食品级材料基质上生物膜形成的抑制作用探索其在食品领域的应用潜力;利用HFF细胞增殖试验测定细菌素BMP32的细胞毒性,采用小鼠皮肤伤口耐药菌感染模型开发其在医药领域的应用。结果表明,在贮藏期内,细菌素BMP32r能有效抑制牛奶中单增李斯特菌的生长,4×MIC的BMP32r在第一天就能完全杀死牛奶中单增李斯特菌且没有出现再次生长的现象。单增李斯特菌生物膜的形成受到温度和粘附材料的影响,在25℃条件下的形成量大于4℃条件下的形成量,在粘附材料上的生物膜形成量为硅胶表面>不锈钢表面>玻璃表面。细菌素BMP32r处理能有效降低生物膜的形成量。此外,细菌素BMP32r可以通过杀死小鼠伤口感染的多重耐药菌促进小鼠皮肤伤口愈合。细菌素BMP32r对HFF细胞具有较低的细胞毒性,即使高浓度(200 mg/L)的细菌素对小鼠主要器官也无明显的损伤,细菌素BMP32r具有一定的生物安全性。这些结果说明,细菌素BMP32r有潜力开发为食品防腐剂和抗菌剂应用于食品和医疗领域。
其他文献
目前黄土高原土壤侵蚀环境明显好转,入黄泥沙量显著减少。由于土壤侵蚀过程的尺度依赖性及侵蚀泥沙的沿途淤积,输沙量只能代表流域的部分侵蚀泥沙量,缺乏对侵蚀-产沙-输沙中间过程的深入认识,可能会忽视侵蚀热点区或由于泥沙淤积而造成的潜在风险。基于此,本文在陕北安塞选择了2个无干扰退耕、2个人为扰动退耕及1个上方梯田果园+下方坡耕地(下文简写为果园)坡沟系统为研究对象,结合陕北子洲“7.26”极端暴雨事件下
南水北调中线工程水源区水资源量变化对受水区、水源区及汉江中下游地区水资源安全及生态安全起重要作用。自十八大以来,我国实施“五位一体战略”,这对该地区水资源安全及生态安全提出了新的要求。另外,各地区纷纷谋划新的区域调水工程,这使该区域的水资源分配方案更加复杂。然而,近年来气候变化和人类活动的加剧使丹江口入库径流量呈现减少的趋势,这对日益激烈的水资源需求带来了挑战。因此,研究水源区降水径流时空变化特征
推移质泥沙起动与输移规律对推动泥沙研究的理论发展、河道开发与治理、水利工程的安全以及河道河床演变趋势的预测具有重要意义。本文基于高速摄像技术,开展了泥沙起动及推移质运动特性试验,并结合理论分析,对泥沙起动、推移质运动及输沙率进行研究。主要工作及创新成果如下:(1)构建了同一起动标准下,不同起动参数量值的对应关系,建立了非均匀泥沙起动流速公式。在前人研究的基础上,从泥沙起动特点出发,重新定义了床面泥
随着我国西部基础工程的建设,一大批水利工程在新疆伊犁地区相继开展。伊犁河谷三面环山,常年受西风气候的影响,使分布在河谷两岸阶地的黄土具有湿陷变形大、易溶盐含量高的特点,明显不同于季风区黄土高原黄土,其遇水后产生的变形是由结构性引起的湿陷变形和易溶盐溶解引起的溶陷变形共同构成。在渠道等水工建筑物运行过程中,受水分运移作用使周边非饱和土中易溶盐含量分布不均,从而影响建筑物运行中的变形、安全问题。本文以
随着居民生活水平的提高,肉、蛋、奶等动物源食品在人们膳食中的比例逐渐增大,因此保障动物源食品质量安全尤为重要。本研究以四种动物源食品安全危害因子(亚硝酸盐、盐酸克伦特罗、四环素和生物胺)为研究对象,利用荧光量子点的独特优势,建立了针对动物源食品危害因子的特异性荧光检测方法。(1)通过一步水热法制备了蓝色荧光的碳量子点(CQDs)。利用亚硝酸根(NO2-)与亚铁离子(Fe2+)间的氧化还原反应以及三
相较于光滑溢洪道,台阶式溢洪道便于机械化施工、消能率高、掺气效果显著,近30多年来,在国内外水利水电工程中得到了广泛的应用。台阶式溢洪道上的水流为复杂的水气两相流,目前大多学者采用直接的方法开展其水力参数的研究,并借鉴光滑溢洪道水力计算理论研究台阶式溢洪道的水面线计算问题,但所得水力参数规律复杂且尚未得到成熟可靠的水面线计算方法。为了总结相对简单的规律并提出相对可靠的水面线计算方法,本文通过将台阶
巴旦木具有较高的经济价值和营养价值,随着人们健康观念的日益提升,巴旦木等坚果产品消费市场逐渐增大。巴旦木在收获、干燥、运输及加工过程中可能会受到来自土壤、水或者空气中的沙门氏菌等食源性致病菌污染。巴旦木在被消费者食用前,可能会被贮藏12个月或者更久,由于贮藏时巴旦木的水分一般在8%左右,通常被认为是安全的。但是,近年来很多关于沙门氏菌感染的病例与贮藏期间巴旦木相关。此外,美国农业部规定在出口前巴旦
苹果酸-乳酸发酵是生产优质葡萄酒的重要生物过程,通过这一过程可以降低酸度、提高微生物稳定性、增加气味和风味的复杂性。酒酒球菌是葡萄酒苹果酸-乳酸发酵的主要启动者和执行者。苹果酸-乳酸发酵的条件复杂且不利于微生物的存活(高乙醇和高SO2水平、低温和低p H)。酸胁迫是最常见的不利环境,会对菌株细胞造成不可逆的损伤。酒酒球菌作为苹果酸-乳酸发酵的优势菌株,其自身有一系列的调控机制来面对酸胁迫的压力。通
酒酒球菌(Oenococcus oeni)是葡萄酒发酵过程中应用最多的一类乳酸菌,除了可以降低葡萄酒的酸度外,其所产的β-葡萄糖苷酶还可以将葡萄酒中糖苷键合态的香气化合物转化为游离态的香气物质而显著提升葡萄酒的香气水平。作为一种纤维素酶,β-葡萄糖苷酶广泛应用于生物质能源转化、食品和医疗等领域,目前,研究人员己对微生物来源的β-葡萄糖苷酶作了大量研究,但这些β-葡萄糖苷酶主要是来源于黑曲霉和酵母菌
脂环酸芽孢杆菌是一类具有嗜酸耐热特性的革兰氏阳性菌的统称,它能够造成多种果汁品质下降,严重影响果汁产业的健康发展。建立灵敏、精确的检测方法,方便高效的识别果汁中脂环酸芽孢杆菌的污染,一直是学者研究的热点,也是果汁企业亟待解决的关键。本研究以建立脂环酸芽孢杆菌的免疫检测体系为主线,通过解析脂环酸芽孢杆菌的细胞壁蛋白,寻找菌体表面潜在的特异识别靶点,并以此为抗原,制备了脂环酸芽孢杆菌的单克隆抗体,并最