论文部分内容阅读
大量的生活污水、含氮工业废水和农业施用的氮肥随径流进入江河、湖泊和水库等,对环境造成的污染日益严重,这是因为氮是引起水体的富营养化的主要因素。去除水中的氮是水污染防治界研究的重点和热点之一。脱氮的方法主要有物理化学法和生物法,其中生物处理法由于成本较低、工艺简单、投资和运行费用低,无二次污染而被认为是一种最佳的处理方法。因而如何经济有效地运用生物学方法去除水体中的氮是目前国内外水资源控制领域研究的方向。生物法处理污水已经过了两个重要的阶段:上世纪70年代以前的常规活性污泥法和随后发展的改进活性污泥法。常规活性污泥法主要是降解污水中的以BOD为主的有机物,因此仍然有大量的氮、磷进入水体;改进活性污泥法将脱氮、除磷作为开发的重点。 传统脱氮理论认为,生物脱氮是由两个过程组成的:硝化反应是由硝化细菌在好氧条件下完成的;反硝化反应是由反硝化菌在缺氧条件下完成的。然而近几年来,人们在生物脱氮研究中发现了许多超出传统认识的现象,如硝化过程不仅由自养菌完成,异养菌也可以参与硝化;反硝化不只在厌氧条件下进行,某些细菌也可在好氧条件下进行反硝化;在微生物学研究方面认为,许多好氧反硝化菌同时也是异养硝化菌(如Thiosphaera pantotropha),并能把NH4+-N氧化成NO3--N后直接进行反硝化反应。这些新观念打破了传统理论中硝化细菌和反硝化细菌的严格界限,认为严格的好氧自养硝化细菌在氧限制条件下能利用NO2--N作为电子受体而进行反硝化。这些现象的发现和实验事实为水处理工作者提供了新的理论和研究思路。同步硝化反硝化(simultaneous nitrification and denitrification—SND)是一种具有挑战性的新概念、新技术,SND是指贵州师范大学硕士学位论文-在相同的操作条件下,硝化和反硝化可以在同一反应器中同时进行。由于SND将硝化作用和反硝化作用结合起来在同一个反应器中同时实现,从而有可能简化工艺流程,节省处理费用。由于硝化反应的产物可直接成为反硝化反应的底物,避免了培养过程中NOZ飞N的积累对硝化反应的抑制,加速了硝化反应的进程。因此,作为一种经济合理飞高效节能的废水处理技术,SND技术具有可持续性和广阔、良好的发展前景。一旦这种低能耗、低投入、高处理效率的工艺投入使用,将会更加有效地控制水体的富营养化。 国内外研究者对SND的研究取得了大量的实验室研究成果,但对SND的概念、机理、发生的途径、影响因素、实现的条件以及在工程应用等方面的认识还不是很清楚。SND作为一种新的观点或者理论,仍然要做大量的研究工作来验证其理论正确性或实际应用的可行性。解决这些问题有助于该技术在实际工程中的应用。 本课题立足于国内外生物脱氮技术研究的基础上,采用单级生物转盘(RBC)生物反应器,进行SND生物处理实验室小型试验。目前己经完成反应器的启动(即SND反应微生物的培养)、污泥的驯化工作,试验进入稳定运行阶段,并成功地实现了同步亚硝酸型脱氮。本试验研究了氨氮负荷、碳源等对同步硝化反硝化的影响;分析了NOZ一形成的原因;运用化工中的连串反应理论推导硝化过程的动力学微分方程;推导有机物降解反应动力学模型。 试验结果表明: 在生物转盘中实现了亚硝酸盐的稳定积累和同步亚硝酸型脱氮,且通过同步亚硝酸型脱氮去除的氮量占总氮量的19%左右,这对于高浓度、低碳氮比废水具有显著的优越性;SND过程中△CODe泌△IN在78,这 贵州师范人学硕十学位论文-与传统脱氮理论法对碳源的需求相当。因而说,单从△CODC丫△,IN来看,SND并不是一个低碳源消耗的过程。适合于发生SND的碳源范围可能在240一80mgcoDc几。因而提出采用一次性投加氮源,分批加入碳源的运行方式。氨氮负荷及水力停留时间影响氨氮的去除效果。氨氮负荷越高,水力停留时间越短,出水氨氮越高,氨氮去除效果越低。碳源不仅影响缺氧反硝化,同时也影响好氧反硝化。且CODC州扎+一比对生物硝化产物的类型不存在明显的影响。 本研究在实践和理论上的创新点主要有:实现了亚硝酸盐的长期、稳定的积累,提出了形成生物转盘系统中亚硝酸盐氮累积的条件;突破了传统生物脱氮理论的认识,进行了同步硝化反硝化(SND)生物脱氮新技术的研究;实现了经亚硝酸盐氮的同步硝化反硝化即同步亚硝酸型脱氮。