论文部分内容阅读
针对Pelee轻量级目标检测网络中参数量和计算量较多、检测精度较差等缺陷,提出了基于分组卷积和特征图级联的轻量级目标检测网络GCPelee。首先,利用分组卷积替换检测模块中的标准卷积形式以减少模型参数量和计算量;其次,在检测模块上应用特征图级联,将感受野较大的特征图包含的信息传递至感受野较小的特征图,提升后者的感受野大小。实验结果表明,优化后的GCPelee模型参数量和计算量均得到减少,检测精度得到了提升。