论文部分内容阅读
由于线性判别分析(Linear discriminant analysis,LDA)算法并不直接以训练误差作为目标函数,所以在Fisher准则不能代表最小训练误差情况下,LDA算法无法找到最优的分类子空间。本文针对这种情况,首先通过分析数据样本分布与LDA投影向量之间的关系,揭示了LDA投影向量与类间散布矩阵和类内散布矩阵特征值之间存在的关联,并以此提出一种基于遗传算法的LDA算法。该算法以子空间上的训练误差最小为目标,通过遗传算法调整LDA算法中类间矩阵特征值的大小,达到搜索最佳特征子空间的效果。通过模