具有马尔可夫调制的随机微分方程数值解的收敛性

来源 :应用数学 | 被引量 : 0次 | 上传用户:lcl427hjc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文在无穷维Hilbert空间中研究了一类具有马尔可夫调制的随机微分方程(SDEwMSs).在一般情况下SDEwMSs没有解析解.因此合适的数值逼近法,例如欧拉法,就是在研究它们性质时所采用的重要工具.本文在较弱的条件下不仅证明了欧拉近似解收敛于SDEwMSs的精确解(分析解),而且给出了欧拉近似阶的界.
其他文献
本文研究了一个含公共开支的两部门的内生经济增长模型,其生产函数具有最一般的形式.用于两部分的三要素-物质资本,人力资本,有效劳动的份额正相关,产出用于公共开支的份额与
本文提出了求解对称性互补问题的乘性Schwarz算法,其中子问题用投影迭代方法求解.利用投影迭代算子的性质及投影迭代的收敛性,证明了算法产生的迭代点列的聚点为原互补问题的
本文提出了一种求解双曲型守恒律新的三阶中心差分格式,主要是引入了一种推广的三阶重构,并证明了这种重构在网格边界无振荡.所提的格式保持了中心差分格式简单的优点,不需用