论文部分内容阅读
针对Mean shift(即MS)算法理论上的不足以及跟踪目标时的邻域跟踪局限性,提出将Mean shift算法与尺度无迹卡尔曼滤波器(Scaled unscented Kalman filter,SUKF)相结合的实时目标跟踪算法。该算法利用尺度无迹卡尔曼滤波器获取Mean shift算法的初始位置,然后,利用Mean shift算法获取跟踪位置。通过分析跟踪区域内横纵向直线的统计变化获取目标的尺度变化,依此自适应调节Mean shift跟踪算法中核函数带宽,并对高速公路上快速运动的车辆进行跟踪实