论文部分内容阅读
为研究面对战场视图如何捕捉到指挥员认知经验的问题,深度学习中CNN可提供有力支持。但CNN的训练需要足够的样本数据,目前难以获得。针对战争中常见的战场包围态势认知及样本不足问题进行了剖析,提出一种基于CNN的样本不足包围态势认知新方法,该方法利用CNN的非线性拟合功能及包围态势图像的对称特性,可在一定程度上获得指挥员对包围态势的认知经验。仿真实验结果证明了方法的有效性和鲁棒性。