The receptor-like cytoplasmic kinase RIPK regulates broad-spectrum ROS signaling in multiple layers

来源 :分子植物(英文版) | 被引量 : 0次 | 上传用户:Boogie
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Production of reactive oxygen species(ROS)via the activity of respiratory burst oxidase homologs(RBOHs)plays a vital role in multiple layers of the plant immune system,including pathogen-associated molecular pattern-triggered immunity(PTI),damage-associated molecular pattern-triggered immunity(DTI),effector-triggered immunity(ETI),and systemic acquired resistance(SAR).It is generally established that RBOHD is activated by different receptor-like cytoplasmic kinases(RLCKs)in response to various immune elicitors.In this study,we showed that RPM1-INDUCED PROTEIN KINASE(RIPK),an RLCK Ⅶ subfamily member,con-tributes to ROS production in multiple layers of plant immune system.The ripk mutants showed reduced ROS production in response to treatment with all examined immune elicitors that trigger PTI,DTI,ETI,and SAR.We found that RIPK can directly phosphorylate the N-terminal region of RBOHD in vitro,and the levels of phosphorylated S343/S347 residues of RBOHD are sigfniciantly lower in ripk mutants compared with the wild type upon treatment with all tested immune elicitors.We further demonstrated that phosphorylation of RIPK is required for its function in regulating RBOHD-mediated ROS production.Similar to rbohd,ripk mutants showed reduced stomatal closure and impaired SAR,and were susceptible to the necrotrophic bacterium Pectobacterium carotovorum.Collectively,our results indicate that RIPK regulates broad-spectrum RBOHD-mediated ROS signaling during PTI,DTI,ETI,and SAR,leading to sub-sequent RBOHD-dependent immune responses.
其他文献
Plants possess a multi-layered immune system(Zhang et al.,2020).Upon pathogen infection,plasma membrane-localized pattern-recognition receptors(PRRs)recognize microbe-/dam-age-associated molecular patterns(MAMPs/DAMPs)or immu-nological phytocytokines to a
期刊
Dear Editor,rnRice(Oryza sativa)is one of the most important crops in the world and a common model plant for genomic research.The genomes of Xian/Indica and Geng/Japonica have been completely sequenced and annotated with accurate genome information.Over t
期刊
Major signaling components in the plant immune system have been discovered via genetic screens.The use of ethylmethane sulfonate or fast-neutron mutagenesis has generated a myriad of mutants with a hyper-or hypoactivated immune system,which led to the dis
期刊
Transcriptional regulation plays a crucial role in plant adaptation to diverse environments.Several transcription factors(TFs),the so-called master switch TFs or hub TFs,regulate various genes critical for adaptation to different stresses.STOP1(SENSITIVE
期刊
Rice is an important food crop and is consumed by nearly half of the world\'s population.Rice grain size is a key yield trait and also affects the quality of grain appearance.Several pathways that control grain size have been identified in rice,such as
期刊
Plants resist viral infection through multiple mechanisms.These include physical barriers,activation of NUCLEOTIDE-BINDING LEUCINE-RICH REPEAT PROTEINS(NLRs),autophagy,biosyn-thesis of defense-related phytohormones,and RNA interference(RNAi).RNAi suppress
期刊
Apoplastic iron(Fe)in roots represents an essential Fe storage pool.Reallocation of apoplastic Fe is of great importance to plants experiencing Fe deprivation,but how this reallocation process is regulated re-mains elusive,likely because of the highly com
Iron(Fe)storage in plant seeds is not only necessary for seedling establishment following germination but is also a major source of dietary Fe for humans and other animals.Accumulation of Fe in seeds is known to be low during early seed development.Howeve
As important structures for water and nutrient absorption,lateral roots are formed at regular time points along with root growth.The sites of lateral root initiation are pre-patterned by an oscillatory mechanism known as the root clock,which is regu-lated
期刊
Paulownias are among the fastest growing trees in the world,but they often suffer tremendous loss of wood production due to infection by Paulownia witches\'broom(PaWB)phytoplasmas.In this study,we have sequenced and assembled a high-quality nuclear geno