论文部分内容阅读
本文应用深度学习技术实现海天背景下基于可见光、红外方式成像的舰船及角反、烟幕干扰的目标检测,这也是反舰导弹作战使用的关键技术之一。采集的可见光与红外成像目标检测数据集涵盖实施典型干扰下的态势场景,贴近实战;结合四种不同的目标检测机制,选取YOLOV3、Faster R-CNN、SSD及CenterNet四种典型模型分别进行训练与验证,通过对比分析进一步提高弱小目标、复杂干扰态势的的检测,可以实现端到端的高精度装备目标检测模型。在确保精度的前提下基于现场可编程门阵列(FPGA)进行软硬件协同设计,通过