论文部分内容阅读
提出了基于模糊神经网络的数控机床温度与热变形的数学模型,该模型根据输入输出样本自动设计和调整模糊系统的参数,并使传统神经网络中没有明确物理含义的权值被赋予模糊逻辑中推理参数的物理含义。将模糊逻辑理论和神经网络结合,提高了网络的泛化能力。文中给出了模糊神经网络结构、算法的具体实现过程。并通过一个仿真实例说明模型可以将20μm内的热变形补偿到1.7μm内,补偿效果明显。针对补偿技术研究与应用中需要快速采集大量的温度及热变形信号问题,以MSC1210微控制器为核心进行模块化设计,温度采集模块通过SPI接口与上位