论文部分内容阅读
局部线性嵌套LLE(locally linear embedding)是一种经典的流形学习方法。对于从单个流形上采样得到的数据集,它能够有效地学习其内在低维结构,然而当数据集是从多个流形上采样得到时,LLE的效果并不理想。提出了一种基于距离度量学习的改进方法:Metric LLE,它利用部分数据点的相似信息来学习距离度量。实验结果表明Metric LLE在应用中有很好的性能:分类能力比LLE好;在可视化方面,效果比Supervised LLE好。