基于拓扑相似和XGBoost的复杂网络链路预测方法

来源 :计算机科学 | 被引量 : 0次 | 上传用户:wujun33
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了提高复杂网络链路预测的性能,采用拓扑相似和XGBoost算法来完成复杂网络链路预测.利用复杂网络拓扑结构建立邻接矩阵,求解共同邻居集合,然后根据拓扑相似理论计算复杂网络相似得分函数,将各个时间窗的得分函数和权重参数作为输入,采用XGBoost算法实现复杂网络的链路预测.通过差异化设置XGBoost算法的两个正则化系数,测试其对链路预测准确率的影响,获取最优正则化系数,从而得到稳定的XGBoost链路预测模型.实验证明,时间窗数量设置合理的情况下,相比常用网络链路预测算法,基于拓扑相似和XGBoost算法的预测准确率优势明显,且预测时间性能和其他算法的差距较小,尤其适用于大规模的复杂网络链路预测.
其他文献
大数据时代,由于信息过载,用户很难从海量数据中寻找出感兴趣的内容,个性化推荐系统的诞生极好地解决了这个问题.协同过滤算法被广泛应用于个性化推荐领域,但由于模型的限制,推荐效果未能得到进一步提升.现有的基于协同过滤模型的改进方法大多都是通过引入表示学习方法来得到更好的用户表示向量和项目表示向量,或通过改进用户项目匹配函数来提升推荐能力,但此类工作都致力于从单个交互提取用户-项目交互信息.文中提出了一种多空间交互协同过滤推荐算法,将用户向量和项目向量映射到多空间,从多角度做用户-项目交互,使用两层注意力机制聚
微博用户兴趣发现对社交网络的个性化推荐和信息传播的正确引导具有重要意义,因此提出了一种基于多粒度文本特征表示的微博用户兴趣识别方法.首先,从主题层、词序层和词汇层3个方面对微博用户构造文本向量,利用LDA提取内容的主题特征,通过LSTM学习内容的语义特征,引入腾讯AI Lab开源词向量获取词义特征;然后,将以上3种特征向量拼接得到的多粒度文本特征表示矩阵输入CNN中,进行文本分类训练;最后,通过多端输出层实现对微博用户的兴趣识别.实验结果表明,多粒度特征表示模型的分类实验结果比单粒度特征表示模型的精准率、
属性网络不但包含节点之间复杂的拓扑结构,还包含拥有丰富属性信息的节点,其可以比传统网络更有效地建模现代信息系统,属性网络的社区划分对于分析复杂系统的层次结构、控制信息在网络中的传播和预测网络用户的群体行为等方面具有重要的研究价值.为了更好地利用拓扑结构信息和属性信息进行社区发现,提出了一种基于矩阵分解的属性网络嵌入和社区发现算法(CDEMF).首先提出基于矩阵分解的属性网络嵌入方法,基于网络局部链接信息计算相邻节点的相似性,将其与属性接近度联合建模,通过矩阵分解的分布式算法得到每个节点对应的低维嵌入向量,