论文部分内容阅读
在模式识别中,许多问题是非线性的.对于未知的样本需要按属性来进行分类,并且由于空间条件的复杂性高,分类器的设计方法也有很多种.利用"交遇区"中的样本的特殊性,把非线性的问题转换成分段线性问题来处理,并设计了基于"交遇区"的样本分段线性分类器,来对未知的样本进行分类.该分类器可以应用于数据挖掘、模式识别、人工智能等领域.