论文部分内容阅读
本文研究了一种基于支持向量机(SVM)的车型图像识别算法。采用图像边缘检测方法,该方法首先基于邻域灰度极值提取边界候选图像,然后以边界候选像素及其邻域像素的二值模式作为样本集,进行运动目标分割并提取具有RST不变性的轮廓特征向量,输入支持向量机进行训练和识别。此外,该算法与传统的算法比较,使用核函数少,计算量小,能较好地解决小样本、非线性和局部极小点等问题。实验表明,基于支持向量机(SVM)的车型图像识别算法具有更好的性能。