论文部分内容阅读
在图像分类识别中,为了获得更高的分类精确度,需要对图片提取更精确和更能表现图片语义信息的特征,深度学习已成为特征提取最常用的方法。提出一种改进的深度卷积神经网络的图片分类模型。通过从网络架构和内部结构两方面对经典的深度神经网络AlexNet的改进和优化,进一步提升特征的表达能力。通过在全连接层引入极限学习机,不仅提高了网络的分类能力和分类时间,而且使得该结构具有更优的数据处理能力。通过在两个标准数据集上的一系列对比实验,分析了不同的优化方法在不同情况下的作用,并证明了该网络结构的有效性。