分组分解法之我见

来源 :初中生世界·七年级 | 被引量 : 0次 | 上传用户:jiangyanxiaonvzi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  用分组分解法分解因式几乎是所有学生所“头疼”的问题.分组分解法是建立在最基本的分解法之上,我们通过适当的分组,把较复杂的多项式分成若干组简单的多项式,使用提公因式.运用公式等方法分解因式.是一个把未知转化为已知的过程.下面我来借三道例题谈谈自己的想法. 全文查看链接
其他文献
解决数学问题的过程,一般总是从正面入手进行思考,这是解决数学问题的一种基本的思想方法.但是有时会遇到从正面考虑比较复杂,甚至无法解决的情况,这时若从问题的反面去思考,或者逆用相关的数学知识,就可以顺利地解决问题,这就是逆向思维.同学们如果能学会逆向思维解题,不仅可以减少运算量,优化解题过程,提高解题能力,而且能培养思维的灵活性和发散性,使掌握的数学知识得到有效迁移.整式的乘法运算与因式分解是互逆的
因式分解是把一个多项式写成几个整式乘积的形式,如果从运算角度上考虑,也就是把一个和在保持大小不变的条件下,写成一个乘积的形式。在解决问题时,如能灵活巧妙地利用因式分解,往往能起到化繁为简,方便快捷的效果。  例1.某商场销售三种不同的的运动鞋。十·一假期,为增加销售量,现在对三种运动鞋实行降价让利活动。已知甲种运动鞋每双售价a元,让利10%;乙种运动鞋每双售价2a元,让利15%;丙种运动鞋每双售价
因式分解作为中学代数中的一个很重要的恒等变形,它的地位十分重要,它有着广泛的应用,利用它可以解决一些实际生活问题。  一.利用因式分解设计密码  例:(05年浙江)在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式 ,因式分解的结果是 ,若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x y)=18,(x2 y2)=162,于是就可以把
数形结合思想是初中数学学习的重要数学思想,利用数形结合思想可以帮助解决一些与整式运算有关的试题.可以帮助我们将抽象问题直观化,复杂问题简单化,从而达到优化解题的目的.下面我们就一起体验它的方便.  1.平方差公式:  【点评】利用同一个图形面积的两种不同表示方法,抓其面积的不变特征,就可以得到相应的乘法公式.考查了学生的思维多样性.  我国数学家华罗庚先生说过,“数无形时不直观,形无数时难入微”,
对于多项式的因式分解,尽管给出了四种基本方法,但是想要灵活运用,初学者还是会有些困难,对于进行恰当的分组让部分同学感到束手无策.许多多项式经过适当的分组以后,可以转化为用已经学过的提公因式法或运用公式法来进行因式分解.分组后的式子通常可以直接提公因式或运用公式.下面让我给大家列举一些我认为容易错的问题与解决的技巧:  1.也有许多同学在做题时会发现,当初步分解后提公因式时,公因式很相似,但位置、符
在因式分解中,除去我们常用的提取公因式法和公式法,还有一种更加重要的分解法,这便是我们不久前学习的分组分解法。尽管老师在课上也为我们总结了很实用的四种方案,但对于有些初学者来说仍是一头雾水,不知其所以。在课后的实践练习和探究中,我总结出了三种分组分解法的小技巧,能帮助我们更好地理解分组分解法的奥义,与大家分享:  一、忆公式  看到题目能联想到公式法中的公式,例:  此类题的添拆需要我们做到熟能生
在学习二元一次方程组时,同学们要善于挖掘隐含条件,要具有方程的思想意识,在平时的学习中,应该不断积累用方程思想解题的方法.在交流和反思的过程中建立知识体系,体验学习数学的成就感.列二元一次方程组的关键是能正确分析出题目中的等量关系,问题往往与生活实际相贴近,与社会关系的热点问题相联系,请平时注意搜集、观察与分析.  类型之一 二元一次方程(组)及其解的概念问题  根据每人植树棵数×人数=植树总棵数