论文部分内容阅读
粒子滤波是一种基于Monte Carlo仿真的最优回归贝叶斯滤波算法,在组合导航系统的观测精度较低时能获得较好的滤波效果,但在观测精度较高时,不但可能导致滤波发散,而且存在重要性分布函数难以选取,出现粒子退化的现象。为了克服这些缺点,文章研究GPS/DR车辆组合导航改进的粒子滤波算法,提出了基于改进粒子滤波算法的GPS/DR车辆组合导航信息融合技术。采用马尔科夫链蒙特卡洛(MCMC)移动方法,移动粒子样本到状态空间中的新位置,既保证了移动后的粒子样本和实际概率函数同分布,又防止了大量后选粒子被拒绝。